

Panda 15000i PMS

Super silent technology

230 V/400 V 50 Hz/60 Hz 15 kVA 120 V/240 V 50 Hz/60 Hz 15 kVA

Revisionsstand

	Dokument
Aktuell:	0013241_Panda_15000i_PMS_deu.R06.1_27.5.24
Ersetzt:	0013241_Panda_15000i_PMS_deu.R06

Revision	Seite
innenliegende PEN Brücke PMGi	
PMGi mit Lade/Wechselrichtern (R04)	
iControl2 berichtigt (Seeventil) R05	
PMGi uni eingepflegt R06	
Neues Design R06.1	

Erstellt durch / created by

Fischer Panda GmbH - Leiter Technische Dokumentation

Otto-Hahn-Str. 32-34

33104 Paderborn - Germany

Tel.: +49 (0) 5254-9202-0

email: info@fischerpanda.de
web: www.fischerpanda.de

Copyright

Die Vervielfältigung und Änderung des Handbuches ist nur mit der Erlaubnis und Absprache des Herstellers erlaubt!

Alle Rechte an Text und Bild der vorliegenden Schrift liegen bei Fischer Panda GmbH, 33104 Paderborn. Die Angaben wurden nach bestem Wissen und Gewissen gemacht. Für die Richtigkeit wird jedoch keine Gewähr übernommen. Es wird ausdrücklich darauf hingewiesen, dass technische Änderungen zur Verbesserung des Produktes ohne vorherige Ankündigung vorgenommen werden können. Es muss deshalb vor der Installation sichergestellt werden, dass die Abbildungen, Beziehungen und Zeichnungen zu dem gelieferten Gerät passen. Im Zweifelsfall muss bei der Lieferung nachgefragt werden.

Seite/Page 2 - Kapitel/Chapter 1:

1.1 Download

Weitere verfügbare Sprachen dieses Handbuches können unter dem unten angegebenen Link heruntergeladen werden.

Other available languages of this manual can be downloaded under the link below.

Vous trouvez d'autres langues disponibles de ce manuel en suivant le lien ci-dessous:

Otros idiomas disponibles en este manual se pueden descargar en el link de abajo:

本手册的其他语言版本可从以下链接下载:

http://www.fischerpanda.de/gensetdocs_eng.htm

Pa	anda 1	5000i PM	S	1
Re	visio	nsstand		2
	1.1			
3	Allaa			
3	Allgemeine Hinweise und Vorschriften			
	3.1		it ist oberstes Gebot!	
	3.2	•	ıng	
	3.3		egistrierung und Garantie	
		3.3.1	Technischer Support	
		3.3.2	Achtung, wichtiger Hinweis zur Inbetriebnahme!	
	3.4		eitshinweise - Sicherheit geht vor!	
		3.4.1	Der sichere Betrieb	
		3.4.2 3.4.3	Die Sicherheitshinweise beachten! Persönliche Schutzkleidung	
		3.4.3	Sauberkeit schützt	
		3.4.5	Sicherer Umgang mit Kraftstoffen und Schmiermitteln	
		3.4.6	Auspuffgase und Feuerschutz	
		3.4.7	Vorsichtsmaßnahmen gegen Verbrennungen und Batterieexplosionen	
		3.4.8	Schützen Sie Hände und Körper vor drehenden Teilen!	
		3.4.9	Frostschutz und Entsorgung von Flüssigkeiten	
		3.4.10	Durchführung von Sicherheitsüberprüfung und Wartung	19
	3.5	Warn- ur	nd Hinweisschilder	. 20
		3.5.1	Besondere Hinweise und Gefahren bei Generatoren	
			3.5.1.1 Schutzleiter und Potenzialausgleich:	
			3.5.1.2 Schutzleiter bei Panda AC Generatoren:	
			3.5.1.3 Bei Arbeiten am Generator alle Verbraucher abschalten	
			3.5.1.5 Sicherheitshinweise bezüglich Kabel	
		3.5.2	Allgemeine Sicherheitshinweise im Umgang mit Batterien.	
4	lm Na	offall Er	ste Hilfe	
•				
	4.1	Atmungs	stillstand bei Erwachsenen	. 24
5	Grun	dlagen		. 25
	5.1	Bestimm	ungsgemäße Verwendung	. 25
	5.2	Zielsetzu	ıng des Handbuches und Erklärung der Personenkreise	. 25
		5.2.1	Fachkräfte	
		5.2.2	Betreiber	25
		5.2.3	Bediener	. 26
	5.3	Kompon	enten des i-Systems	. 26
	5.4	Öffnen d	er Fischer Panda Transportbox	. 27
		5.4.1	Verschraubte Fischer Panda Transportbox	27
		5.4.2	Fischer Panda Transportbox mit Metalllaschenverschluss	28
	5.5	Öffnen d	er Schalldämmkapsel aus MPL	. 28
	5.6	Öffnen d	er Schalldämmkapsel aus GFK	. 29
	5.7		rt und Verlastung	
		5.7.1	Transport des Generators	
		5.7.2	Verlasten des Generators.	
	5.8 Spezielle Wartungshinweise und Maßnahmen bei langen Stillstandzeiten und Außerbetriebnahme . 3		. 30	

5.8.1 Hinweise für die Starterbatterie bei längeren Stillstandszeiten				
		5.8.2	<u> </u>	
		5.8.3	Maßnahmen bei mittelfristigem Stillstand / Überwinterung	
			5.8.3.1 Maßnahmen der Konservierung:	
			5.8.3.2 Maßnahmen der Entkonservierung nach mittelfristigem Stillstand (3 Mornate) 32	ate dis 6 ivio
		5.8.4	Maßnahmen bei langfristigem Stillstand / Außerbetriebnahme	
			5.8.4.1 Maßnahmen der Konservierung:	
			5.8.4.2 Maßnahmen der Entkonservierung nach langfristigem Stillstand / wieder me als 6 Monate): 34	Inbetriebnah
F	G-Kon	formitäts	serklärung	35
7			Di PMS Generator	
′				
	7.1	• •	child am Generator	
	7.2		eibung des Generators	
		7.2.1	Seitenansicht Rechts	
		7.2.2	Linke Seite	
		7.2.3	Vorderseite	
		7.2.4	Rückseite	
		7.2.5	Draufsicht	
	7.3		nsicht der Baugruppen	
		7.3.1	Fernbedienpanel - Siehe iControl Panel Datenblat	
		7.3.2	Komponenten des Kühlwassersystems (See- und Frischwasser)	
		7.3.3	Komponenten des Kraftstoffsystem, Ansaugluftführung und Abgassystems	
		7.3.4	Komponenten des elektrischen Systems	
		7.3.5	Komponenten des Schmierölsystems	
		7.3.6	Sensoren und Schalter zur Betriebsüberwachung	
	7.4		sanleitung - Siehe Panda iControl Panel Datenblatt	
		7.4.1	Tägliche Überprüfung vor dem Start - Siehe iControl Panel Datenblatt	
		7.4.2	Starten des Generators - Siehe iControl Panel Datenblatt	
		7.4.3	Stoppen des Generators - Siehe iControl Panel Datenblatt	
8	Insta	llationsa	anleitung	49
	8.1	Persona	al	49
	8.2	Aufstellu	ungsort	49
		8.2.1	Vorbemerkungen	49
		8.2.2	Einbauort und Fundament	
		8.2.3	Hinweis zur optimalen Schalldämmung	50
	8.3		isse am Generator	
	8.4	Anschlu	uss des Kühlwassersystems - Seewasser	51
		8.4.1	Allgemeine Hinweise	
		8.4.2	Anordnung der Borddurchführung bei Yachten - Schema	
		8.4.3	Qualität der Seewasseransaugleitung	
		8.4.4	Einbau des Generators über der Wasserlinie	
		0.4.5	8.4.4.1 Seewasser Installatiosschema	
		8.4.5	Einbau des Generators unter der Wasserlinie	
	_ =		8.4.5.1 Seewasser Installationsschema	
	8.5		tion des Standard-Abgassystems - Schema	
		8.5.1	Auslegung des Abgassystems	
	8.6	Einbau d	des "Wassersammlers"	57

		8.6.1 Mögliche Ursachen für Wasser in der Abgasleitung	
		8.6.1.1 Mögliche Ursache: Abgasleitung	
		8.6.1.2 Mögliche Ursache: Kühlwasserleitung	
		8.6.3 Das Volumen des Abgaswassersammlers	
		8.6.3.1 Ideale Position des Wassersammlers	
		8.6.3.2 Beispiel für den Einbau des Wassersammlers außerhalb der Mitte mit Da möglichen Folgen: 61	
	8.7	Abgas-Wasser Trenneinheit	63
	8.8	Installation Abgas-Wasser-Trenneinheit- Schema	63
	8.9	Installation des Kraftstoffsystems	
		8.9.1 Die folgenden Komponenten müssen installiert werden:	
		8.9.2 Anschluss der Leitungen am Tank	
		8.9.3 Position des Vorfilters mit Wasserabscheiders	66
	8.10	Generator DC System-Installation	66
		8.10.1 Allgemeine Sicherheitshinweise im Umgang mit Batterien	66
		8.10.2 Installation der Batterieanschlussleitungen	67
		8.10.3 Anschluss der Starterbatterie	67
	8.11	Anschluss des Fernbedienpanels - Siehe iControl Panel Datenblatt	70
	8.12	Generator AC System installation	71
		8.12.1 Installation PMGi Inverter - Siehe PMGi Inverter Datenblatt	72
	8.13	Isolationstest	72
	8.14	Inbetriebnahme	72
9	Gene	erator Betriebsanweisung	73
•	9.1	Personal	
	0.1	9.1.1 Sicherheitshinweise für den Betrieb	
	9.2	Allgemeine Hinweise zum Betrieb	74
		9.2.1 Betrieb bei niedrigen Temperaturen	
		9.2.1.1 Vorglühen des Dieselmotors	
		9.2.1.2 Tipps zur Starterbatterie	
		9.2.2 Betrieb mit geringer Last und Leerlauf	74 74
		9.2.2.1 Grunde für die Verrusung des Generators	beachtet we
		9.2.3 Belastung des Motors im Dauerbetrieb und Überlast	75
		9.2.4 Schutzleiter	
		9.2.5 Betriebsüberwachungssystem am Fischer Panda Generator	75
	9.3	Kontrollen vor dem Start - siehe Fernbedienpanel Datenblatt	75
	9.4	Start des Generators - siehe Fernbedienpanel Datenblatt	75
	9.5	Abschalten des Generators - siehe Fernbedienpanel Datenblatt	76
10	Wartı	ungshinweise	77
	10.1	Personal	77
		10.1.1 Gefahrenhinweise für die Wartung	
		10.1.2 Entsorgung der Motorflüssigkeiten	78
	10.2	Allgemeine Wartungsanweisungen	79
10.3 Wartungsintervalle			
	10.3	Wartungsintervalle	79

	10.5	J	des Seewasserkreislaufs	
		10.5.1	Seewasserfilter reinigen	
		10.5.2	Seewasserpumpe und Impeller	
		10.5.3	10.5.2.1 Ursachen bei häufigem Impellerverschleiß	
	10.6		ilter	
	10.0	10.6.1	Betriebsweise	
		10.6.2	Reinigung und Tausch des Impellersiebs	
		10.6.3	Erstes Befüllen und Entlüften des internen Kühlwasserkreises	
			10.6.3.1 Frostschutz im Kühlkreislauf	
		10.6.4	Temperaturprüfung zur Kontrolle des Kühlkreises	85
	10.7	Austaus	ch des Luftfilters	87
	10.8	Austaus	ch der Luftfiltermatte "Marine"	
		10.8.1	Alternativer Austausch des Luftfilters durch Schnellwechselhalter	88
	10.9	Austaus	ch des Luftfilters	90
		10.9.1	Entlüften des Kraftstoffsystems	
		10.9.2	Austausch des Kraftstofffilters	94
	10.10		prüfen und auffüllen	
			Ölstand prüfen	
		10.10.2		
			Nach der Ölstandskontrolle und dem Ölauffüllen	
	10.11		n des Motorenöls und des Motorölfilters	
		10.11.1 Nach dem Ölwechsel		
	10.12	2 Überprüfen der Starterbatterie und ggf. der Batteriebank		
		10.12.1	Batterie	
			10.12.1.2Überprüfen des Elektrolytstandes	
			10.12.1.3 Elektrolytdichte kontrollieren	
	10.13	Austaus	ch der Arbeitsstromrelais	102
	10.14	Austaus	ch der Sicherungen	103
			ch des Keilriemens für die interne Kühlwasserpumpe	
	04"			40=
11		_	Generator	
	11.1		O falso distribution for the distribution of t	
		11.1.1	Gefahrenhinweise für für dieses Kapitel	
			ge und Messinstrumente	
	11.3		ung des Generators	
		11.3.1	Generator-Ausgangsspannung ist zu niedrig	
	11.4	•	pleme	
		11.4.1	Elektrisches Kraftstoffmagnetventil	
		11.4.2	Verschmutzter Kraftstofffilter	
	11.5	Tabelle z	zur Fehlerbeseitigung	111
12	Anha	ng		113
	12.1	Fehlertal	belle	113
	12.2	Techniso	che Daten	115
		12.2.1	Leitungsdurchmesser	116

12.3	Kabelquerschnitte		
12.4	12.4.1	Motorenöl Klassifizierung	116
	12.4.2	SAE Klassen Motoröl	
12.5		sser	
	12.5.1	Empfohlenes Frostschutzmittel	
	12.5.2	Verhältnis Kühlwasser/Frostschutz	
12.6	Kraftsto	ff	117
12.7	CO2 Bila	anz aus dem Abgasmesszyklus bei Motoren nach 2016/1628 EC	118
13 Inve	erter Panc	da PMGi	119
13.1	Sicherhe	eitshinweise	120
13.2		child	
_	• •		
		eite / Anschlussseite 230 V Beispielbild	
13.4		eite / Anschlussseite 400 V Beispielbild	
13.5		eite / Anschlussseite 120 V/240 V Beispielbild	
	13.5.1	Buchsenbelegung des PMGi	
		13.5.1.1 PMGi AC out	
		13.5.1.2 PMGi input	
		13.5.1.4 Externe PE/N Brücke	
13.6	Rücksei	te - Oberseite	
13.7		ungen zum Betrieb von iGeneratoren mit Lade/Wechselrichtern	
13.7	13.7.1	Einstellungen in der Victron VE Configure II Software - General	
	10.7.1	13.7.1.1 Uninterrupted AC power (UPS funktion)	
		13.7.1.2 Dynamic current limiter	
	13.7.2	Einstellungen in der Victron VE Configure II Software - Inverter	
		13.7.2.1 Assist current boost factor	127
	13.7.3	Victron AC out	127
13.8	Betriebs	anleitung	128
	13.8.1	Vorbemerkungen/Winterbetrieb	128
	13.8.2	Belastung des PMGi im Dauerbetrieb	128
	13.8.3	Automatikstart	128
13.9	Betriebs	anzeigen/Fehlermeldungen - LED Anzeigen	128
13.10) Kühlung	g des PMGi	128
13.1°	1 Installat	tion des PMGi	129
		Kühlwasser schema - Fahrzeug Generator	
		13.11.1.1Integrieren des PMGi in das Kühlsystem	
		13.11.1.2Kühlwasserschema für PVK-UK iGeneratoren	
		13.11.1.3Kühlwasserschema für Marine Generatoren (PMS)	
	13.11.2	Elektrischer Anschluss	
		13.11.2.1Anschluss an ein RCD überwachtes System	
		13.11.2.2Anschluss an Systeme mit Isolationsüberwachung	
13.12		che Daten	
	13.12.1	Allgemeine Daten	
		Generator Spezifikation	
		PMGi Ausgangs-Spezifikation	
	13.12.4	Kurzschluss	141

Panda i	Control2	143
Aktuell	er Revisionsstand	144
Hardwa	re	144
14 Sich	erheitshinweise Panda iControl2	145
	Personal	
	Sicherheitshinweise	
	erelle Bedienung	
15.1	•	
15.1	Startvorbereitungen / Kontrolltätigkeiten (täglich)	
13.2	15.2.1 Marine Version	
	15.2.2 Fahrzeug Version	
15.3	Bedienung	149
	15.3.1 Ein- und Ausschalten der Steuerung	149
	15.3.2 Die Standard Displayseite	
	15.3.3 Betriebsmodi	
	15.3.3.1 Standby-Modus	
	15.3.3.2 Start-Modus	
	15.3.3.4 Operation-Modus	
	15.3.3.5 Panda i-Generator mit elektro-magnetischer Kupplung (optional)	
	15.3.3.6 Stopp-Modus	
	15.3.3.7 Autostart-Modus	155
15.4	Weiterführende Bedienung	156
	15.4.1 Setup-Menü	
	15.4.2 Einstellen der Helligkeit der Hintergrundbeleuchtung ("backlight" und "dimtime")	
	15.4.3 Das Konfigurationsmenü ("config")	
	15.4.4 Die Network ID	
	15.4.5 Einstellungen speichern und Setup-Menü verlassen ("Save & Exit")	
	15.4.6 Aktivieren/Deaktivieren der Autostartfunktion ("Autostart")	
	15.4.7 Service-Intervall zurücksetzen ("Service")	
	15.4.8 Entlüften des Kraftstoffsystems ("Prime Fuel")	
4	15.4.9 Einheit für die Ausgabe der Temperaturwerte auswählen und speichern	
	iControl2-Not-Stop	
	allation	
16.1	Personal	
	16.1.1 Gefahrenhinweise für die Installation	163
16.2	Entsorgung der Komponenten	
	16.2.1 Panda iControl2-Panel mit Einbaugehäuse	
	16.2.2 Klemmenbelegungen am Panda iControl2-Panel	165
16.3	Abmessungen	166
16.4	Beschaltung des Panda iControl2-Steuergerätes	167
	16.4.1 Klemmenbelegungen am Panda iControl2-Steuergerät	
	16.4.1.1 Klemmenbelegung des 18-poligen Steckers	
	16.4.1.2 Fischer Panda Standard-Bus	
16.5	Master and Slave Panels	169

16.6	Inbetriebnahme	169
17 Wart	tung	171
17.1	Wartung des icontrol2 Steuergerätes	171
	17.1.1 Reinigung des iControl2 Steuergerätes	171
17.2	Wartung des iControl2 Fernbedienpanels	171
	17.2.1 Reinigung des iControl2 Fernbedienpanels	
18 Warr	nungen und Fehlermeldungen	173
18.1	Warnungen	173
	18.1.1 Beispiele für Warnungen auf dem Display:	173
	18.1.2 Warnmeldungen	
18.2	Fehler	174
	18.2.1 Fehlermeldungen	
	18.2.2 Warn- und Fehlerschwellen	
	18.2.3 Busfehler	
18.3	•	
	18.3.1 Wie erreicht man den Fehlerspeicher des iControl2-Panels?	178
	18.3.2 Wie werden abgespeicherte Fehler angezeigt?	178
	18.3.3 Wie verlasse ich den Fehlerspeicher nach dem Betrachten der Einträge'	
	18.3.4 Kann ich den Fehlerspeicher löschen?	179
	18.3.5 Wo werden die Fehler abgespeichert?	
	18.3.6 In welcher Sprache werden die gespeicherten Fehler angezeigt?	179
	18.3.7 Ist es möglich, einen älteren iGenerator um den Fehlerspeicher zu erwei	tern? 179
19 Anha	ang	181
19.1	Technische Daten	181
19.2	Technische Daten iControl2 Steuergerät	181
19.3	Technische Daten iControl2 Fernbedienpanel	181
19.4	CO2 Bilanz aus dem Abgasmesszyklus bei Motoren nach 2016/1628 EC	

Leere Seite / Intentionally blank

Seite/Page 12 Kapitel/Chapter 2: 27.5.24

Sehr verehrter Kunde,

vielen Dank, dass Sie sich für den Kauf eines Fischer Panda Generators entschieden haben und Fischer Panda als Ihren Partner für mobile Energie an Bord gewählt haben. Mit Ihrem Generator haben Sie die Möglichkeit, Ihren eigenen Strom zu produzieren – wherever you are - und Sie sind damit noch unabhängiger. Sie haben nicht nur einen Fischer Panda Generator an Bord; Sie werden auch weltweit von unserem Fischer Panda Team unterstützt. Bitte nehmen Sie sich die Zeit, diese Informationen zu lesen. Wir unterstützen Sie auch bei:

Abnahme der Generatorinstallation und Garantie

Jeder Generator hat eine weltweite Garantie. Sobald die Installation abgenommen wurde, können Sie die Garantie durch Ihren Händler registrieren lassen. Falls Sie eine erweiterte Garantie erworben haben, heben Sie diese gut auf und stellen Sie sicher, dass Ihr Händler Ihre aktuelle Adresse hat. Lassen Sie sich von Ihrem Händler bezüglich Garantieoptionen beraten, vor allem, wenn Sie einen gebrauchten Generator gekauft haben. Er kann Sie unterstützen und Ihnen weltweit die autorisierten Fischer Panda Servicestationen mitteilen.

Service und Support

Um sicherzustellen, dass Ihr Generator einwandfrei läuft, müssen regelmäßige Wartungen und Aufgaben, wie im Handbuch beschrieben, durchgeführt werden. Fischer Panda kann Service Kits liefern, die auf regelmäßige Instandhaltungsarbeiten abgestimmt sind. Wir liefern nur Komponenten höchster Qualität und es ist sichergestellt, dass Sie die RICHTIGEN Ersatzteile für Ihren Generator erhalten. Service "Plus" Kits sind auch erhältlich und sind ideal für längere Fahrtzeiten, wenn mehr als ein Serviceintervall notwendig ist.

Wenn Sie Hilfe benötigen, kontaktieren Sie bitte Ihren Fischer Panda Händler. Bitte versuchen Sie nicht, Reparaturen selbst durchzuführen, da dies Ihre Generatorgarantie beeinträchtigen kann. Ihr Händler kann Ihnen behilflich sein, die nächstgelegene Fischer Panda Servicestation zu finden. Sie können auch die nächste Servicestation in unserem Global Service Netzwerk finden, welches als Download auf unserer Homepage zur Verfügung steht.

Produktregistrierung

Bitte nehmen Sie sich Zeit. Ihren Fischer Panda Generator auf unserer Webseite unter

http://www.fischerpanda.de/mypanda zu registrieren.

Durch das Registrieren wird gewährleistet, dass Sie immer auf dem neuesten Stand sind. Sie erhalten technische Upgrades oder spezielle Informationen über den Betrieb oder die Wartung Ihres Generators. Ebenso werden Sie über neue Fischer Panda Produkte informiert, was besonders hilfreich sein kann, wenn Sie Ihre Installation zu einem späteren Zeitpunkt erweitern wollen.

Fischer Panda Qualität - zertifiziert nach DIN ISO 9001

Vielen Dank für den Kauf eines Fischer Panda Generators.

Ihr Fischer Panda Team

3. Allgemeine Hinweise und Vorschriften

3.1 Sicherheit ist oberstes Gebot!

Warnzeichen werden in diesem Handbuch verwendet, wenn bei Ausführung bestimmter Wartungsarbeiten bzw. Bedienungsvorgängen Verletzungs- oder Lebensgefahr besteht. Die so gekennzeichneten Hinweise müssen auf jeden Fall genau durchgelesen und befolgt werden.

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Es muss immer die Batteriebank abgeklemmt werden (zuerst Minuspol dann Pluspol), wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

Unsachgemäße Wartung kann zu schweren Personenoder Sachschäden führen. Deshalb:

- Wartungsarbeiten nur bei abgestellten Motor Vornehmen
- Vor Beginn der Arbeiten für ausreichende Montagefreiheit sorgen
- auf Ordnung und Sauberkeit am Arbeitsplatz achten! Lose aufeinander- oder umherliegende Bauteile und Werkzeuge sind Unfallquellen
- Wartungsarbeiten nur mit Handelsüblichen Werkzeug und Spezielwerkzeug durchführen. Falsches oder beschädigtes Werkzeug kann zu Verletzungen führen

Öl und Kraftstoffdämpfe können sich bei Kontakt mit Zündquellen entzünden. Deshalb

- · Kein offenes Feuer bei arbeiten am Motor
- nicht rauchen
- Öl und Kraftstoffrückstände vom Motor und vom Boden entfernen

Kontakt mit Motoröl, Kraftstoff und Frostschutzmittel kann zur Gesundheitsschädigung beim Einatmen, beim Verschlucken oder bei Hautkontakt führen. Deshalb:

- Hautkontakt mit Motoröl, Kraftstoff und Frostschutzmittel vermeiden.
- Öl und Kraftstoffspritzer umgehend von der Haut entfernen.
- Öl und Kraftstoffdämpfe nicht einatmen.

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Die elektrischen Spannungen von über 60 V sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen

Warnung! Automatikstart

Warnung! Verletzungsgefahr

Warnung! Feuergefahr

Vorsicht! Vergiftungsgefahr

Warnung! Elektrische Spannung

Elektrofachmann durchgeführt werden.

Generator und Kühlwasser können bei und nach dem Betrieb heiß sein. Verbrennungs-/Verbrühungsgefahr!

Durch den Betrieb kann sich im Kühlsystem ein Überdruck bilden.

Batterien enthalten ätzende Säure und Laugen.

Durch unsachgemäße Behandlung können sich Batterien erwärmen und bersten. Ätzende Säure /Lauge auslaufen. Unter ungünstigen Bedingungen kann es zu einer Explosion kommen.

Beachten Sie die Hinweise Ihres Batterieherstellers.

Persönliche Schutzausrüstung ist ggf. zu Tragen. Hierzu Gebot! Schutzausrüstung erforderlich gehört:

- · Eng anliegende Schutzkleidung
- · Sicherheitsschuhe
- · Sicherheitshandschuhe
- Gehörschutz
- · ggf. Schutzbrille

Um Schäden an den Geräten zu vermeiden, sind bei Arbeiten am Generator immer alle Verbraucher abzuschalten.

Warnung! Heiße Oberfläche/Material

Warnung!

Achtung! Alle Verbraucher abschalten.

3.2 **Entsorgung**

Motorflüssigkeiten/Batterien sind schädlich für die Umwelt.

Abgelassene Motorflüssigkeiten sammeln und fachgerecht entsorgen!

Batterien fachgerecht entsorgen.

Gebot! Der Umwelt zu liebe.

3.3 Kundenregistrierung und Garantie

Nutzen Sie die Vorteile der Kundenregistrierung:

- Sie erhalten ein Garantie-Zertifikat nach Prüfung Ihrer Installationsdaten.
- Sie erhalten erweiterte Produktinformationen, die unter Umständen sicherheitsrelevant sind.
- · Sie erhalten, wenn nötig, kostenlose Upgrades.

Weitere Vorteile:

Durch Ihre vollständigen Angaben können Ihnen die Fischer Panda Techniker schnelle Hilfestellung geben, da 90 % der Störungen durch Fehler in der Peripherie entstehen.

Probleme durch Fehler in der Installation können im Vorfeld erkannt werden.

3.3.1 Technischer Support

Technischer Support per Internet: info@fischerpanda.de

3.3.2 Achtung, wichtiger Hinweis zur Inbetriebnahme!

- 1. Sofort nach der ersten Inbetriebnahme ist das Inbetriebnahmeprotokoll auszufüllen und durch Unterschrift zu bestätigen.
- 2. Das Inbetriebnahmeprotokoll muss innerhalb von 4 Wochen nach der ersten Inbetriebnahme bei Fischer Panda GmbH in Paderborn eingegangen sein.
- 3. Nach Erhalt des Inbetriebnahmeprotokolls wird von Fischer Panda die offizielle Garantiebestätigung ausgefertigt und den Kunden übersandt.
- 4. Bei anstehenden Garantieansprüchen muss das Dokument mit der Garantiebestätigung vorgelegt werden.

Werden die vorstehenden Auflagen nicht oder nur teilweise durchgeführt, so erlischt der Garantieanspruch.

3.4 Sicherheitshinweise - Sicherheit geht vor!

3.4.1 Der sichere Betrieb

Ein vorsichtiger Umgang mit der Maschine ist die beste Versicherung gegen einen Unfall. Lesen Sie das Handbuch sorgfältig durch und verstehen Sie es, bevor Sie die Maschine in Betrieb nehmen. Alle Bediener, ganz gleich, über wie viel Erfahrung sie verfügen, müssen dieses, sowie weitere zugehörige Handbücher, durchlesen, bevor die Maschine in Betrieb genommen, oder ein Anbaugerät angebracht wird. Der Besitzer ist dafür verantwortlich, dass alle Bediener diese Information erhalten und in die sichere Bedienung eingewiesen werden.

3.4.2 Die Sicherheitshinweise beachten!

Lesen und verstehen Sie dieses Handbuch sowie die Sicherheitshinweise auf dem Generator, bevor Sie versuchen, den Generator zu starten und in Betrieb zu nehmen. Erlernen Sie die Bedienung und arbeiten Sie sicher. Machen Sie sich mit dem Gerät und seinen Grenzen vertraut. Halten Sie den Generator in gutem Zustand.

3.4.3 Persönliche Schutzkleidung

Tragen Sie bei der Wartung und Reparatur der Maschine **keine** lose, zerrissene oder unförmige Kleidung, die an den Vorsprüngen hängen bleiben kann, oder mit Riemenscheiben, Kühlscheiben oder anderen drehenden Teilen in Berührung kommen kann, wodurch schwere Verletzungen verursacht werden können.

Tragen Sie bei der Arbeit angemessene Sicherheits- und Schutzkleidung.

Bedienen Sie den Generator nicht unter Einfluss von Alkohol, Medikamenten oder Drogen.

Tragen Sie keine Radio- oder Musikkopfhörer, während Sie die Maschine bedienen, warten oder reparieren.

3.4.4 Sauberkeit schützt

Halten Sie den Generator und seine Umgebung sauber.

Vor dem Reinigen ist der Generator abzuschalten und vor unbeabsichtigtem Starten zu sichern. Halten Sie den Generator frei von Schmutz, Fett und Abfällen. Lagern Sie brennbare Flüssigkeiten nur in geeigneten Behältern und mit genügend Abstand zum Generator. Überprüfen Sie die Leitungen regelmäßig auf Lecks und beseitigen Sie diese ggf. sofort.

3.4.5 Sicherer Umgang mit Kraftstoffen und Schmiermitteln

Halten Sie offenes Feuer von Kraftstoffen und Schmiermitteln fern.

Vor dem Auftanken und/oder Abschmieren stets den Generator abschalten und gegen unbeabsichtigtes Starten sichern.

Im Bereich von Kraftstoff und Generator nicht rauchen und offene Flammen und Funken vermeiden. Kraftstoff ist leicht entzündlich und unter bestimmten Bedingungen explosiv.

Nur an einem gut belüfteten und offenen Platz nachtanken. Falls Kraftstoff/Schmiermittel verschüttet wurde, Flüssigkeit sofort beseitigen.

Dieselkraftstoff nicht mit Benzin oder Alkohol mischen. Eine solche Mischung kann Feuer verursachen und schädigt den Generator.

Verwenden Sie nur zugelassene Kraftstoffbehälter und Tankanlagen. Alte Flaschen und Kanister sind nicht geeignet.

3.4.6 Auspuffgase und Feuerschutz

Motorabgase können, wenn sie sich sammeln, gesundheitsgefährdend sein. Stellen Sie sicher, dass die Generatorabgase entsprechend abgeleitet werden (dichtes System) und dass genügend Frischluft für den Generator und den Bediener zugeführt wird (Zwangsbelüftung).

Überprüfen Sie die Anlage regelmäßig auf Lecks und beseitigen Sie diese gegebenenfalls.

Abgase und abgasführende Teile sind sehr heiß, sie können unter Umständen Verbrennungen verursachen. Halten Sie den Generator und die Auspuffanlage stets frei von brennbaren Teilen.

Zur Vermeidung von Feuer stellen Sie sicher, dass elektrische Leitungen nicht kurzgeschlossen werden. Überprüfen Sie regelmäßig, dass alle Leitungen und Kabel in gutem Zustand sind und keine Scheuerstellen vorhanden sind. Blanke Drähte, offene Scheuerstellen, ausgefranste Isolierungen und lockere Kabelverbindungen können gefährliche Stromschläge, Kurzschlüsse und Brand verursachen.

Der Generator ist durch den Betreiber in das vorhandene Feuerschutzsystem einzubeziehen.

CALIFORNIA

Proposition 65 Warning

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

Abgase von Dieselmotoren und einige Bestandteile sind krebserregend und können Missbildungen und andere Gendefekte verursachen.

3.4.7 Vorsichtsmaßnahmen gegen Verbrennungen und Batterieexplosionen

Der Generator, die Kühl- und Schmierstoffe sowie der Kraftstoff können nach dem Betrieb des Generators heiß sein. Nehmen Sie sich vor heißen Komponenten wie z. B. auspuffführende Teile, Kühler, Schläuche und Motorblock während des Betriebes, und nachdem der Generator abgestellt wurde, in Acht.

Das Kühlsystem kann unter Druck stehen. Öffnen Sie das Kühlsystem nur, nachdem der Motor und die Kühlflüssigkeit abgekühlt sind. Tragen Sie entsprechende Schutzkleidung (z. B. Schutzbrille, Handschuhe).

Stellen Sie vor dem Betrieb sicher, dass das Kühlsystem verschlossen ist und alle Schlauchschellen fest angezogen sind.

Die Batterie stellt eine Explosionsgefahr dar, dies gilt sowohl für die Starterbatterie als auch für die Batteriebank der AGT-Generatoren. Wenn Batterien geladen werden, ist das dabei entstehende Wasserstoff-Sauerstoff Gemisch hoch explosiv (Knallgas).

Verwenden und laden Sie die Batterien nicht, wenn sich der Flüssigkeitsstand unter der MINIMUM Markierung befindet. Die Lebensdauer der Batterie wird dadurch stark vermindert, und es kann vermehrt zu Explosionen kommen. Füllen Sie den Flüssigkeitsstand umgehend zwischen dem Maximum- und Minimumstand auf.

Besonders während des Ladens sind Funken und offenes Feuer von den Batterien fernzuhalten. Stellen Sie sicher, dass die Batteriepole fest angeschlossen und nicht korrodiert sind um Funken zu vermeiden. Benutzen Sie entsprechendes Polfett.

Prüfen Sie die Ladung mit einem entsprechenden Voltmeter oder Säureheber. Ein Metallgegenstand über den Polen führt zu Kurzschluss, Batterieschädigung und hoher Explosionsgefahr.

Laden Sie keine gefrorenen Batterien. Vor einem externen Laden sind die Batterien auf +16 °C (61 °F) anzuwärmen.

3.4.8 Schützen Sie Hände und Körper vor drehenden Teilen!

Betreiben Sie den Generator nur mit geschlossener Kapsel.

Halten Sie Ihre Hände und Ihren Körper von drehenden Teilen, wie z.B. Keilriemen, Ventilatoren, Riemenscheiben und Schwungscheiben fern. Die Berührung kann ernsthafte Verletzungen verursachen.

Den Motor nicht ohne Sicherheitseinrichtungen laufen lassen. Vor dem Start alle Sicherheitseinrichtungen fest montieren und überprüfen.

3.4.9 Frostschutz und Entsorgung von Flüssigkeiten

Frostschutz enthält Gift. Um Verletzungen zu vermeiden, Gummihandschuhe tragen und im Falle eines Hautkontaktes sofort abwaschen. Mischen Sie verschiedene Frostschutzmittel nicht miteinander. Die Mischung kann eine chemische Reaktion verursachen, durch die schädliche Substanzen entstehen. Verwenden Sie nur von Fischer Panda zugelassenen Frostschutz.

Schützen Sie die Umwelt. Fangen Sie abgelassene Flüssigkeiten (Schmierstoffe, Frostschutz, Treibstoff) auf und entsorgen Sie diese ordnungsgemäß. Beachten Sie hierbei die Vorschriften des jeweiligen Landes. Sorgen Sie dafür, dass keine Flüssigkeiten (auch Tropfmengen) in den Boden, den Abfluss oder in Gewässer gelangen.

3.4.10 Durchführung von Sicherheitsüberprüfung und Wartung

Die Batterie vom Motor abklemmen, bevor Servicearbeiten durchgeführt werden. Befestigen Sie am Bedienpanel - sowohl Haupt- als auch entsprechende Slavepanel - je ein Schild mit der Aufschrift "NICHT IN BETRIEB SETZEN - WARTUNGSARBEITEN", um ungewolltes Starten zu vermeiden.

Um Funkenbildung durch einen unbeabsichtigten Kurzschluss zu vermeiden, stets das Massekabel (-) zuerst entfernen und zuletzt wieder anschließen. Beginnen Sie die Arbeiten erst, wenn der Generator mit allen Flüssigkeiten sowie das Abgassystem abgekühlt sind.

Verwenden Sie nur geeignetes Werkzeug und Vorrichtungen und machen Sie sich mit deren Funktionsweise vertraut, um Sekundärschäden und/oder Verletzungen zu vermeiden.

Halten Sie bei Wartungsarbeiten stets einen Feuerlöscher und einen Erste Hilfe Kasten bereit.

3.5 Warn- und Hinweisschilder

Halten Sie Warn- und Hinweisschilder sauber und lesbar.

Reinigen Sie die Schilder mit Wasser und Seife und trocknen Sie sie mit einem weichen Tuch.

Beschädigte oder fehlende Warn- und Hinweisschilder sind sofort zu ersetzen. Dies gilt auch beim Einbau von Ersatzteilen.

3.5.1 Besondere Hinweise und Gefahren bei Generatoren

Die elektrischen Installationen dürfen nur durch dafür ausgebildetes und geprüftes Personal vorgenommen werden!

Der Generator darf nicht mit abgenommener Abdeckhaube in Betrieb genommen werden.

Sofern der Generator ohne Schalldämmgehäuse montiert werden soll, müssen die rotierenden Teile (Riemenscheibe, Keilriemen etc.) so abgedeckt und geschützt werden, dass eine Verletzungsgefahr ausgeschlossen wird.

Falls vor Ort ein Schalldämmumbau angefertigt wird, muss durch gut sichtbar angebrachte Schilder darauf hingewiesen werden, dass der Generator nur mit geschlossenem Schalldämmgehäuse eingeschaltet werden darf.

Alle Service-, Wartungs- oder Reparaturarbeiten dürfen nur bei stehendem Motor vorgenommen werden.

Elektrische Spannungen über 50 V (bei Batterieladern sogar schon bei mehr als 36 V) sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

3.5.1.1 Schutzleiter und Potenzialausgleich:

Elektrischer Strom über 50 V kann lebensgefährlich sein. Aus diesem Grunde werden Systeme mit einem Schutzleiter geerdet. In Verbindung mit einem RCD (FI-Schalter) wird im Fehlerfall die Stromversorgung abgetrennt.

Entsprechende Schutzmaßnahmen wie der RCD und entsprechende Sicherungen müssen kundenseitig vorhanden sein, um einen sicheren Betrieb des Generators zu gewährleisten.

3.5.1.2 Schutzleiter bei Panda AC Generatoren:

Serienmäßig ist der Generator "genullt" (Mittelpunkt und Masse sind im Generatorklemmkasten durch eine Brücke miteinander verbunden). Dies ist eine erste Grundsicherung, die, solange keine anderen Maßnahmen installiert sind, einen Schutz bietet. Sie ist vor allem für die Auslieferung und einen eventuell erforderlichen Probelauf gedacht.

Diese "Nullung" (PEN) ist nur wirksam, wenn alle Teile des elektrischen Systems auf einem gemeinsamen Potenzial "geerdet" sind. Die Brücke kann entfernt werden, wenn das aus installationstechnischen Gründen erforderlich ist und stattdessen ein anderes Schutzsystem eingerichtet worden ist.

Beim Betrieb des Generators liegt auch in der AC-Kontrollbox die volle Spannung an. Es muss deshalb unbedingt sichergestellt sein, dass die Kontrollbox geschlossen und sicher vor Berührung ist, wenn der Generator läuft.

Die Batterie muss immer abgeklemmt werden, wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

3.5.1.3 Bei Arbeiten am Generator alle Verbraucher abschalten

Um Schäden an den Geräten zu vermeiden, sind bei Arbeiten am Generator immer alle Verbraucher abzuschalten. Ferner muss das Halbleiterrelais in der AC-Kontrollbox abgeklemmt werden, um zu vermeiden, dass während der Einstellung die Boosterkondensatoren aktiviert werden können. Der Minuspol der Batterie soll abgeklemmt werden.

Die Fischer Panda AGT-Generatoren (und AGT-DE) besitzen keine Kondensatoren. Bei diesen Generatoren kann dieser Absatz übersprungen werden.

Achtung! Wichtiger Hinweis

Zum Betrieb des Generators werden Kondensatoren benötigt. Diese erfüllen zwei unterschiedliche Funktionen:

- A) Die Betriebskondensatoren
- B) Die Startverstärkungskondensatoren (Booster)

Beide Gruppen befinden sich in der separaten AC-Kontrollbox.

Kondensatoren sind elektrische Speicher. Es kann vorkommen, dass an den Kontakten der Kondensatoren auch nach dem Trennen vom elektrischen Netz noch für einige Zeit eine hohe elektrische Spannung anliegt. Sicherheitshalber dürfen die Kontakte nicht berührt werden. Wenn Kondensatoren ausgewechselt oder geprüft werden sollen, soll man mit einem elektrischen Leiter durch einen Kurzschluss zwischen den Kontakten die evtl. noch gespeicherte Energie entladen.

Wenn der Generator auf normale Weise abgeschaltet wird, sind die Betriebskondensatoren über die Wicklung des Generators automatisch entladen. Die Boosterkondensatoren werden durch interne Entladungswiderstände entladen.

Sicherheitshalber müssen alle Kondensatoren vor Arbeiten an der AC-Kontrollbox durch Kurzschluss entladen werden.

3.5.1.4 Potenzialausgleich bei Panda AGT DC Generatoren

Weiterführende Informationen für Ihren Generator siehe Kapitel Installation.

3.5.1.5 Sicherheitshinweise bezüglich Kabel

Kabeltypen

Es wird empfohlen, dass Kabel verwendet werden, die sich an die Norm UL 1426 (BC-5W2) anlehnen, mit Typ 3 (ABYC Abschnitt E-11).

Kabelquerschnitt

Das Kabel muss unter Berücksichtigung der Stromstärke, Kabelart und Leiterlänge (vom positiven Stromquellenanschluss an das elektrische Gerät und zurück zum negativen Stromquellenanschluss) ausgewählt werden.

Kabelinstallation

Es wird empfohlen, dass ein selbstentwässerndes Kabelschutzrohr klassifiziert als V-2 oder besser im Einklang mit UL 94, in dem Bereich der Kabelführung im Inneren der Kapsel, installiert wird. Es ist darauf zu achten, dass die Kabelführung nicht an heiße Oberflächen wie Abgaskrümmer oder Motorölablassschraube entlang geführt wird, sondern möglichst frei von jeglicher Entstehung von Reibung und Quetschung.

3.5.2 Allgemeine Sicherheitshinweise im Umgang mit Batterien.

Diese Hinweise sind zusätzlich zu den Hinweisen des Batterieherstellers zu beachten:

- Wenn Sie an den Batterien arbeiten, sollte jemand in Hörweite sein, um Ihnen notfalls helfen zu können.
- · Halten Sie Wasser und Seife bereit für den Fall, dass Batteriesäure Ihre Haut verätzt.

- Tragen Sie Augenschutz und Schutzkleidung. Berühren Sie nicht die Augen, während Sie an den Batterien hantieren.
- Wenn Sie einen Säurespritzer auf die Haut oder Kleidung erhalten haben, waschen Sie diesen mit viel Wasser und Seife aus.

- Wenn Sie Säure in die Augen bekommen haben, sollten Sie dieses sofort mit sauberem Wasser spülen, bis kein Brennen mehr spürbar ist. Suchen Sie sofort einen Arzt auf.
- Rauchen Sie niemals im Bereich der Batterien. Vermeiden Sie offenes Feuer. Im Bereich von Batterien besteht Explosionsgefahr.
- · Achten Sie darauf, dass keine Werkzeuge auf die Batteriepole fallen, decken Sie diese nötigenfalls ab.
- Tragen Sie bei der Installation keinen Armschmuck oder eine Armbanduhr, womit unter Umständen ein Batteriekurzschluss erzeugt werden kann. Verbrennungen der Haut würden die Folge sein.

- · Schützen Sie sämtliche Batteriekontakte gegen unbeabsichtigte Berührung.
- Für Batteriebänke: Verwenden Sie nur zyklenfeste tiefentladefähige Batterien. Starterbatterien sind ungeeignet. Es werden Bleigel Batterien empfohlen. Sie sind wartungsfrei, tiefenladefähig und gasen nicht.

- · Laden Sie niemals eine gefrorene Batterie.
- · Vermeiden Sie Batteriekurzschlüsse.
- Sorgen Sie für gute Ventilation der Batterie, um entstehende Gase abzuleiten.
- Batterieverbindungsklemmen müssen vor jedem Betrieb auf festen Sitz geprüft werden.
- Batterieverbindungskabel müssen sorgfältigst verlegt und auf unzulässige Erwärmung unter Belastung geprüft werden. Prüfen Sie die Batterie im Bereich vibrierender Bauteile regelmäßig auf Scheuerstellen und Fehler in der Isolierung.

ACHTUNG! Für Batterieladegeneratoren (Fischer Panda AGT-DC)!

Prüfen Sie vor der Installation, dass die Spannung der Batteriebank mit der Ausgangsspannung des Generators übereinstimmt.

4. Im Notfall - Erste Hilfe

•		-
	Erste Hilfe bei Unfällen durch Stromschläge	
	Falls jemand einen elektrischen Schlag erlitten hat, sollten diese 5 Schritte eingehalten werden.	
1	Versuchen Sie nicht, das Opfer zu berühren, solange der Generator läuft.	
2	Schalten Sie den Generator sofort ab.	
3	Wenn Sie den Generator nicht ausschalten können, benutzen Sie einen Holzstab, ein Seil oder einen anderen nicht leitenden Gegenstand, um die Person in Sicherheit zu bringen.	
4	Schicken Sie so schnell wie möglich nach Hilfe (Notarzt rufen)	
5	Beginnen Sie sofort mit erforderlichen Erste-Hilfe Maßnahmen.	

4.1 Atmungsstillstand bei Erwachsenen

Versuchen Sie nicht, die hier dargestellten Beatmungstechniken anzuwenden, wenn Sie nicht dazu ausgebildet sind. Die Anwendung dieser Techniken durch ungeschultes Personal kann zu weiteren Verletzungen oder zum Tod des Opfers führen.

Warnung!

1 Reagiert die Person? Person berühren oder vorsichtig schütteln. Ansprechen "Wie geht es Ihnen?"	2 "Hilfe!"rufen. Andere dazu auffordern, telefonisch Hilfe herbei zu rufen.
3 Person auf den Rücken drehen. Drehen Sie das Opfer in Ihre Richtung, indem sie es langsam zu sich ziehen.	
4 Mund des Opfers öffnen Den Kopf zurück neigen und das Kinn anheben. Ansprechen: "Sind Sie in Ordnung?"	5 Achten Sie auf die Atmung Für 3 bis 5 Sekunden auf die Atmung achten; durch Horchen und Fühlen.
6 Beatmen Sie 2 x mit vollem Atemzug. Kopf des Opfers im Nacken halten. Die Nase des Opfers zuhalten. Pressen sie ihren Mund fest auf den Mund des Opfers. Machen Sie zwei 1 - 1,5 Sekunden dauernde volle Atemzüge.	
7 Puls an der Halsschlagader prüfen Tasten Sie 5 bis 10 Sekunden nach dem Puls.	Rufen Sie 112 zu Hilfe Beauftragen Sie jemanden, einen Krankenwagen anzurufen.
Mit der Wiederbeatmung beginnen. Kopf des Opfers im Nacken halten. Kinn des Opfers anheben. Die Nase des Opfers zuhalten. Alle 5 Sekunden beatmen. Zwischen den Zügen auf die Atmung achten; durch Horchen und Fühlen.	10 Minütlich den Puls prüfen. Kopf des Opfers dabei zurückgebeugt halten. 5 bis 10 Sekunden nach dem Puls fühlen. Wenn sie einen Puls, aber keine Atmung spüren, die Wiederbeatmung fortsetzen. Ist kein Puls zu spüren, mit Herzmassage beginnen.

5. Grundlagen

5.1 Bestimmungsgemäße Verwendung

Der Fischer Panda Diesel Elektrogenerator ist ausschließlich zur Verwendung als fest eingebauter Stromerzeuger in (Kraftfahrzeugen, Anhängern und mobilen Containern) (Binnenschiffen) (Seeschiffen) bestimmt.

5.2 Zielsetzung des Handbuches und Erklärung der Personenkreise

Das Handbuch ist die Arbeitsanweisung und Bedienungsanweisung für den Betreiber und den Bediener von Fischer Panda Generatoren.

Das Handbuch dient als Grundlage und Leitfaden für die ordnungsgemäße Installation und Wartung von Fischer Panda Generatoren. Es ersetzt nicht die fachliche Beurteilung und Auslegung sowie die Anpassung der Installation an örtliche Begebenheiten und den nationalen/internationalen Vorschriften. Alle Arbeiten sind nach dem Stand der Technik auszuführen.

5.2.1 Fachkräfte

Als Fachkräfte für die mechanischen Komponenten gelten ausgebildete KFZ-Mechaniker oder Personen mit vergleichbarer Qualifikation.

Als Fachkräfte für die elektrischen Komponenten gelten Fachelektriker, Elektrotechniker oder Personen mit vergleichbarer Qualifikation.

Nach der Installation hat die Fachkraft den Betreiber in die Bedienung und Wartung des Generators einzuweisen. Er muss den Betreiber über vorliegende Gefahren beim Betrieb hinweisen.

5.2.2 Betreiber

Als Betreiber gelten die für den Betrieb des Generators verantwortliche Personen.

Nach der Installation muss der Betreiber im Umgang und der Bedienung des Generators eingewiesen werden. Hierzu zählen insbesondere die Gefahren während des Betriebes, verschiedene Betriebszustände und die Einweisung in die Wartung des Generators.

Der Betreiber hat das Handbuch vollständig zu lesen und die angegebenen Sicherheitshinweise und Vorschriften zu beachten.

5.2.3 Bediener

Als Bediener gelten Personen, die vom Betreiber eingesetzt werden, den Generator zu bedienen und zu betreiben.

Es ist vom Betreiber sicherzustellen, dass der Bediener das Handbuch vollständig gelesen hat und dass die entsprechenden Sicherheitshinweise und Vorschriften beachtet werden. Der Bediener ist entsprechend seinen Aufgabengebiet vom Betreiber zu schulen und fachkundig zu machen. Dies gilt insbesondere für den Bereich Wartung.

5.3 Komponenten des i-Systems

Panda i-Generator
 Permanentmagnet-Generator

Abbildung ähnlich!

2. Panel Panda iControl mit Steuerplatine am Generator

Fig. 5.3-2: iControl Panel

3. Panda PMGi Inverter AC/AC

Abbildung ähnlich!

Fig. 5.3-4: Handbuch

4. Fischer Panda Handbuch

Das Fischer Panda Handbuch umfasst folgende Komponenten:

- Klarsichthülle mit allgemeinen Informationen, Garantiebedingungen, Einbauprotokollen und Serviceliste.
- Generatorhandbuch mit angehängtem Handbuch des Fernbedienpanels
- Ersatzteilkatalog "Installation & Service Guide"
- · Motorhandbuch des Motorenherstellers
- · Schaltplan des Generators

Beispielbild

Optionales Zubehör

Zum optionalen Zubehör gehören z.B.:

- Krafstoffpumpe
- Installationskits

Fischer Panda I was designed. I was de

5.4 Öffnen der Fischer Panda Transportbox

5.4.1 Verschraubte Fischer Panda Transportbox

- 1. Lösen der Verschraubungen Deckel-Seitenwände
- 2. Abnehmen des Deckels
- 3. Herausnehmen der losen Zubehörteile
- 4. Lösen der Verschraubungen Seitenwände-Bodenpalette
- 5. Abnehmen der Seitenwände
- 6. Lösen der Gerätefixierung

5.4.2 Fischer Panda Transportbox mit Metalllaschenverschluss

- 1. Aufbiegen der Metall-Laschenverschlüsse am Transportboxdeckel
- 2. Abnehmen des Deckels
- 3. Herausnehmen der losen Zubehörteile
- 4. Aufbiegen der Metall-Laschenverschlüsse am Transportboxboden
- 5. Abnehmen der Seitenwände
- 6. Lösen der Gerätefixierung

5.5 Öffnen der Schalldämmkapsel aus MPL

Zum Öffnen der Schalldämmkapsel müssen die Verschlüsse ca. 180° gegen den Uhrzeigersinn gedreht werden. Benutzen sie hierfür einen Schlitz-Schraubendreher. Ziehen sie die Seitenwände an den Griffmulden heraus.

Beispielbild

Verschluss zu.

Beispielbild

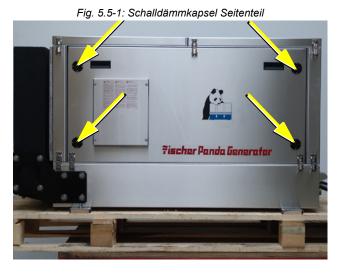


Fig. 5.5-2: Verschluss zu

Verschluss offen.

Beispielbild

Fig. 5.5-3: Verschluss offen

5.6 Öffnen der Schalldämmkapsel aus GFK

GFK Kapsel mit Laschenverschlüssen

Beispielbild

Zum Öffnen der Schalldämmkapsel müssen die Laschenverschlüsse in Pfeilrichtung gezogen und vom Verschlussunterteil abgehoben werden. Nach dem Öffnen aller Verschlüsse können die Kapseloberteile vom Unterteil abgehoben werden.

Beispielbild

Fig. 5.6-2: Laschenverschlüsse

5.7 Transport und Verlastung

5.7.1 Transport des Generators

- Der Generator darf nur aufrecht stehend transportiert werden.
- Zum Transport ist die Fischer Panda Transsportbox für den Generator zu verwenden. Der Generator ist auf dem Boden der Box sicher zu fixieren.
- Beim Verladen muss ein entsprechendes Flurförderfahrzeug verwendet werden.
- Je nach Transportweg (z. B. Luftfracht), sind evtl. die Generatorflüssigkeiten (Kühlmittel, Motoröl, Kraftstoff) abzulassen. Entsprechende Vermerke und Warnhinweise müssen auf der Transportverpackung angebracht werden.

5.7.2 Verlasten des Generators.

Zum Verlasten des Generators sind entsprechende Ringschrauben in die Bohrungen der Tragschienen zu montieren. Die Traglast jeder Ringöse muss mindestens dem Generatorgewicht entsprechen.

Beim Verlasten ist eine entsprechende Hebetraverse zu verwenden.

Fig. 5.7.2-1: Beispiel Hebetraverse

5.8 Spezielle Wartungshinweise und Maßnahmen bei langen Stillstandzeiten und Außerbetriebnahme

Die Konservierung und Lagerung muss den Gegebenheiten Hinweis: und Lagerbedingungen vor Ort angepasst werden.

Fischer Panda haftet nicht für Schäden, die durch falsche Lagerung/Konservierung entstehen.

Die Stillstandszeiten werden in folgende Gruppen unterteilt:

- Kurzfristiger Stillstand (1 bis 3 Monate).
- Mittelfristiger Stillstand / Überwinterung (3 bis 6 Monate).
- Langfristiger Stillstand / Außerbetriebnahme (mehr als 6 Monate).

5.8.1 Hinweise für die Starterbatterie bei längeren Stillstandszeiten

Starterbatterien Hinweis:

Selbstentladung von Batterien ist ein physikalischer und chemischer Vorgang und kann auch durch das Abklemmen der Batterie nicht vermieden werden.

- Bei längeren Stillstandzeiten ist die Batterie vom Aggregat abzuklemmen.
- Batterie regelmäßig laden. Hinweise des Batterieherstellers befolgen.

Je nach Batterietyp ist der Säurestand vor dem Laden zu prüfen und gegebenenfalls jede Zelle mit destilliertem Wasser bis zur Markierung aufzufüllen.

Heutige Starterbatterien sind in der Regel wartungsfrei.

Eine Tiefentladung schädigt die Batterie und kann zur Unbrauchbarkeit führen.

Batterie sauber und trocken halten. Batteriepole (+ und -) und Klemmen regelmäßig reinigen und mit einem säurefreien und säurebeständigen Fett einfetten. Beim Zusammenbau auf guten Kontakt der Klemmanschlüsse achten.

Generelle Grenzwerte für Blei-Säurebatterien:

2,1 V / Zelle entspricht Batterie voll (geladen).

1,95 V / Zelle entspricht Batterie leer - nachladen.

Für eine 12 V gilt:

- 11,7 V untere Ruhespannung (Batterie leer), Batterie nachladen.
- 12,6 V obere Ruhespannung (Batterie voll) Erhaltungsladung bei voller Batterie 13,2 V.

Für eine 24 V gilt:

- 23,4 V untere Ruhespannung (Batterie leer), Batterie nachladen.
- 25,2 V obere Ruhespannung (Batterie voll) Erhaltungsladung bei voller Batterie 26,4 V.

Diese Werte sind auf eine Batterietemperatur von 20-25 °C bezogen. Beachten Sie die Angaben des Batterieherstellers.

Fischer Panda Empfehlung:

Hinweis:

 Batterietrennschalter einbauen und an der Maschine in Off-Stellung drehen. (Batteriekreis trennen)

- Der Batteriepluspol nahe an der Batterie absichern
- Kontakte regelmäßig auf Korrosion prüfen.

5.8.2 Maßnahmen bei kurzfristigem Stillstand

Kurzfristiger Stillstand (1 bis 3 Monate)

- Batterieladezustand mittels Ruhespannung messen.
- Bei Stillstandzeiten >7 Tage Batterie abklemmen (z. B. Batteriehauptschalter auf 0 Stellung)
- Innerhalb von 2 Monaten die Batterie überprüfen und den Motor für mindestens 10 min warmlaufen lassen.
- Diesel im Tank auffüllen bis 100 % (Stand voll).

5.8.3 Maßnahmen bei mittelfristigem Stillstand / Überwinterung

Mittelfristiger Stillstand (3 Monate bis 6 Monate)

5.8.3.1 Maßnahmen der Konservierung:

- Batterieladezustand prüfen und gegebenenfalls regelmäßig ca. alle 2 Monate aufladen. Hinweise des Batterieherstellers befolgen.
- Frostschutzgrad Kühlwasser prüfen und ggf. auffüllen.

Das Frostschutzmittel darf nicht älter als 2 Jahre sein. Der Gehalt an Frostschutzmittel soll zwischen 40 % und 60 % liegen, um den Korrosionsschutz im Kühlwasserkreislauf zu sichern. Ggf. ist Kühlmittel aufzufüllen.

Sollte das Kühlwasser abgelassen werden, z. B. nach der Motor Konservierung, darf kein Wasser im Motor während der Stillstandszeit verbleiben. An der Bedieneinheit muss ein entsprechender Hinweis "KEIN KÜHLWASSER" angebracht werden.

- · Motorenöl wie vorgeschrieben ablassen. Motor mit Konservierungsöl bis Maxstand am Ölpeilstab auffüllen.
- Diesel im Tank ablassen und mit einem Konservierungsgemisch (90 % Diesel und 10 % Konservierungsöl) befüllen (Stand voll).

Motor drehen lassen, aber nicht starten.

 Keilriemen wie vorgeschrieben demontieren und verpackt an einem trockenen Ort lagern. Vor UV-Strahlung schützen.

Lichtmaschinenöffnungen abdecken.

Achtung!

Reinigungsflüssigkeiten und Konservierungsmittel dürfen nicht in die Lichtmaschine eindringen. Gefahr der Zerstörung der Lichtmaschine.

- · Motor laut Herstellerangabe reinigen.
- Motorteile und Keilriemenscheiben mit Konservierungsmittel einsprühen.
- Luftfiltergehäuse reinigen und mit Konservierungsmittel einsprühen (nur Metallgehäuse).
- Ansaug- und Abgasöffnungen verschließen (z. B. mit Tape oder Endkappen).

Vor der Wiederinbetriebnahme eine Entkonservierung durchführen.

Achtung!

5.8.3.2 Maßnahmen der Entkonservierung nach mittelfristigem Stillstand (3 Monate bis 6 Monate)

- Batterieladezustand prüfen und gegebenenfalls aufladen. Hinweise des Batterieherstellers befolgen.
- · Frostschutzgrad Kühlwasser und Kühlwasserstand prüfen, ggf. auffüllen.
- Motoröl ablassen. Ölfilter und Motoröl gemäß der Spezifikation erneuern.
- Konservierungsmittel des Motors mit Petroleumbenzin entfernen.
- Keilriemenscheiben entfetten und Keilriemen ordnungsgemäß montieren. Keilriemenspannung prüfen!
- Falls vorhanden, Turboladeröldruckleitung lösen und sauberes Motoröl in Kanal füllen.
- Motorstopphebel in Nullförderung halten und Motor mehrmals von Hand durchdrehen.
- Luftfiltergehäuse mit Petroliumbenzin reinigen, Luftfilter pr

 üfen und ggf. erneuern.
- Abdeckungen der Abgasöffnung und der Ansaugöffnungen entfernen.

- · Batterie anklemmen. Batteriehauptschalter schließen.
- Stopphebel am Generatormotor in Nullposition halten und Anlasser für ca. 10 Sekunden starten. Danach 10 Sekunden Pause. Diesen Vorgang 2 x wiederholen.
- Sichtprüfung des Generators gemäß einer Erstinbetriebnahme und Generator in Betrieb setzen.

5.8.4 Maßnahmen bei langfristigem Stillstand / Außerbetriebnahme

Stillstandszeiten (mehr als 6 Monate)

5.8.4.1 Maßnahmen der Konservierung:

- Frostschutzgrad Kühlwasser prüfen und ggf. auffüllen.

Das Frostschutzmittel darf nicht älter wie 2 Jahre sein. Der Gehalt an Frostschutzmittel soll zwischen 40 % und 60 % liegen, um den Korrosionsschutz im Kühlwasserkreislauf zu sichern. Ggf. ist Kühlmittel aufzufüllen.

Sollte das Kühlwasser abgelassen werden, z.B. nach der Motor-Konservierung, darf kein Wasser im Motor während der Stillstandszeit verbleiben. An der Bedieneinheit muss ein entsprechender Hinweis "KEIN KÜHLWASSER" angebracht werden.

- Motorenöl wie vorgeschrieben ablassen. Motor mit Konservierungsöl bis Maximalstand am Ölpeilstab auffüllen.
- Diesel im Tank ablassen und mit einem Konservierungsgemisch (90 % Diesel und 10 % Konservierungsöl) befüllen (Stand voll).

Motor drehen lassen, aber nicht starten.

- Keilriemen wie vorgeschrieben demontieren und verpackt an einem trockenen Ort lagern. Vor UV Strahlung schützen.
- · Batterie abklemmen. Pole mit säurefreiem Fett benetzen.

Lichtmaschinenöffnungen abdecken.

Achtung!

Reinigungsflüssigkeiten und Konservierungsmittel dürfen nicht in die Lichtmaschine eindringen. Gefahr der Zerstörung der Lichtmaschine.

- · Motor laut Herstellerangabe reinigen.
- Motorteile und Keilriemenscheiben mit Konservierungsmittel einsprühen.
- Luftfiltergehäuse reinigen und mit Konservierungsmittel einsprühen (nur Metallgehäuse).
- Abgasturbolader (wenn vorhanden) mit Konservierungsmittel ansaug- und abgasseitig einsprühen und Leitungen wieder anschließen.
- Ventildeckel entfernen und mit Konservierungsöl Innenseite Ventildeckel, Ventilschäfte, Federn Kipphebel etc. einsprühen.
- Einspritzdüsen entfernen und Zylinderraum mit Konservierungsöl benetzen. Stopphebel in Richtung Nullförderung halten und Motor von Hand mehrmals durchdrehen. Einspritzdüsen mit neuen Dichtungen (bei einer Betriebsdauer von min. 100 Stunden nach dem letzten Wechsel) wieder einschrauben. Drehmomente beachten.
- Kühlerdeckel und Tankdeckel bzw. Kühlerdeckel am Ausgleichsbehälter leicht mit Konservierungsmittel einsprühen und wieder aufsetzen.
- Ansaug- und Abgasöffnungen verschließen (z. B. mit Tape oder Endkappen).

Bei Lagerung länger als 12 Monate, ist die Konservierung jährlich zu überprüfen und ggf. zu ergänzen. Hinweis:

Vor der Wiederinbetriebnahme eine Entkonservierung durchführen.

Achtung!

5.8.4.2 Maßnahmen der Entkonservierung nach langfristigem Stillstand / wieder Inbetriebnahme als 6 Monate):

- Batterieladezustand prüfen und gegebenenfalls aufladen. Hinweise des Batterieherstellers befolgen.
- Frostschutzgrad Kühlwasser und Kühlwasserstand prüfen, ggf. auffüllen.
- Motoröl ablassen. Ölfilter und Öl gemäß Spezifikation erneuern.
- Konservierungsmittel des Motors mit Petroleumbenzin entfernen.
- · Keilriemenscheiben entfetten und Keilriemen ordnungsgemäß montieren. Keilriemenspannung prüfen!
- Falls vorhanden Turboladeröldruckleitung lösen und sauberes Motoröl in Kanal füllen.
- Motorstopphebel in Nullförderung halten und Motor mehrmals von Hand durchdrehen.
- · Luftfiltergehäuse mit Petroliumbenzin reinigen, Luftfilter prüfen und ggf. erneuern.
- · Abdeckungen der Abgasöffnung und der Ansaugöffnungen entfernen.
- Batterie anklemmen. Batteriehauptschalter schließen.
- Stopphebel am Generatormotor in Nullposition halten und Anlasser für ca. 10 Sekunden starten. Danach 10 Sekunden Pause. Diesen Vorgang 2 x wiederholen.
- Sichtprüfung des Generators gemäß einer Erstinbetriebnahme und Generator in Betrieb setzen.

Fischer Panda Empfehlung:

Hinweis:

Nach einem langfristigen Stillstand sollte eine vollständige Inspektion It. Inspektionsliste durchgeführt werden.

EG-Konformitätserklärung

gemäß EG-Maschinenrichtlinie 2006/42/EG, Anhang II A

Hersteller Fischer Panda GmbH

Otto-Hahn-Straße 40

33104 Paderborn

Fischer Panda Diesel Elektrogenerator **Produkt**

G 15000i PMS 270-370-3 G3 Produkt-Typ

Art. Nr. 0013241 2021-Baujahr

Funktionsbeschreibung Der Fischer Panda Diesel Elektrogenerator ist

> ausschließlich zur Verwendung als fest eingebauter Stromerzeuger in (Kraftfahrzeugen, Anhängern und mobilen Containern) (Binnenschiffen) (Seeschiffen)

bestimmt.

Hiermit erklären wir, dass diese Maschine aufgrund ihrer Konzipierung und Bauart in der von uns in Verkehr gebrachten Ausführung den grundlegenden Sicherheits- und Gesundheitsanforderungen der nachfolgend aufgeführten europäischen und nordamerikanischen Richtlinien und Verordnungen entspricht

(EU) 2016/1628

Verordnung über die Anforderungen in Bezug auf die Emissionsgrenzwerte für gasförmige Schadstoffe und luftverunreinigende Partikel und die Typgenehmigung für Verbrennungsmotoren nicht

Straßenverkehr bestimmte mobile Maschinen und Geräte

(EU) 517/2014

Verordnung über fluorierte Treibhausgase und zur Aufhebung der

Verordnung (EG) Nr. 842/2006

(EG) 661/2009

Verordnung über die Typgenehmigung von

Kraftfahrzeugen, Kraftfahrzeuganhängern und von

Systemen, Bauteilen und selbstständigen technischen Einheiten für diese

Fahrzeuge hinsichtlich ihrer allgemeinen Sicherheit

2014/30/EU

Richtlinie zur elektromagnetischen Verträglichkeit

2014/35/EU

Niederspannungsrichtlinie

2006/42/EG

Maschinenrichtlinie

2005/88/EG

Änderung der Richtlinie 2000/14/EG über die Angleichung Rechtsvorschriften über umweltbelastende Geräuschemissionen von zur

Verwendung im Freien vorgesehenen Geräten und Maschinen

2002/88/EG

Richtlinie zur Bekämpfung der Emission von gasförmigen Schadstoffen und luftverunreinigenden Partikeln aus Verbrennungsmotoren für mobile

Maschinen und Geräte

Diese Maschine entspricht den nachfolgend aufgeführten Normen und Übereinkommen:

DIN EN ISO 8528-13:2017- Stromerzeugungsaggregate mit HubkolbenVerbrennungsmotor - Teil 13:

Sicherheit

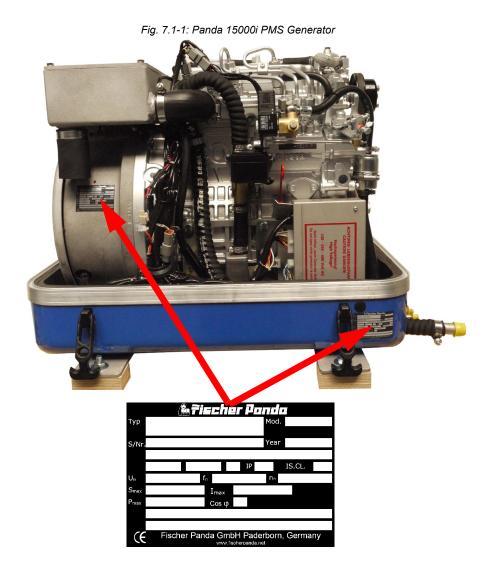
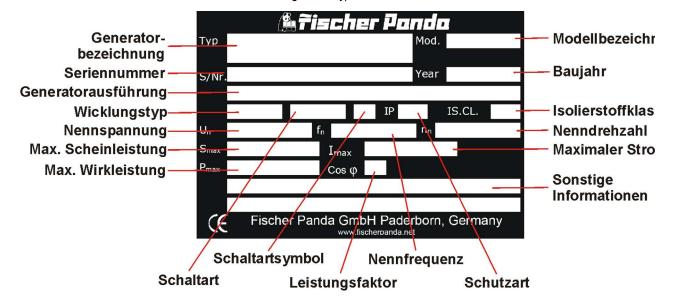
03

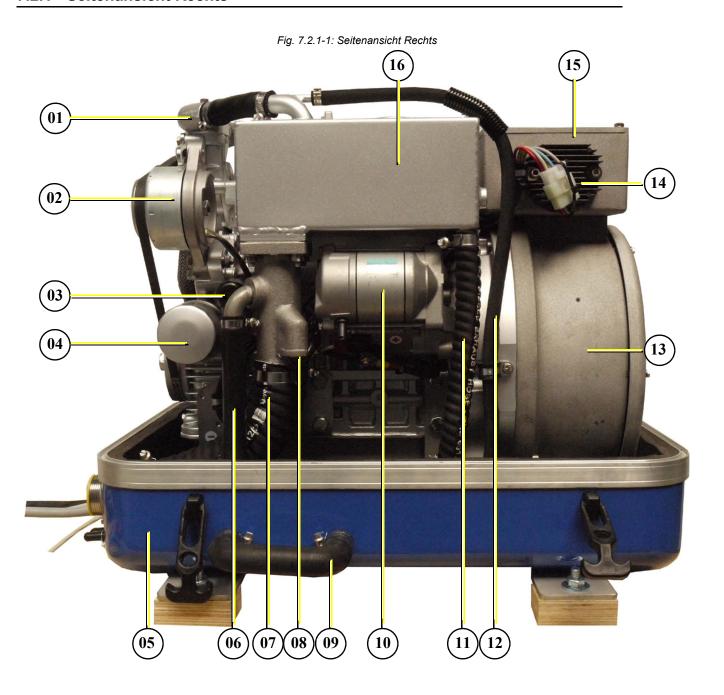
DIN EN ISO 12100:2010	Sicherheit von Maschinen - Allgemeine Gestaltungsleitsätze - Risikobeurteilung und Risikominderung
DIN ISO 6826:2000-05	Hubkolben-Verbrennungsmotoren - Brandschutz
DIN EN 60034-1:2015-02	Drehende elektrische Maschinen - Teil 1: Bemessung und Betriebsverhalten
DIN EN 60204-1:2014-10	Sicherheit von Maschinen - Elektrische Ausrüstung von Maschinen - Teil 1: Allgemeine Anforderungen
ISO 3046-1:2002-05	Hubkolben-Verbrennungsmotoren - Anforderungen - Teil 1:
	Angaben über Leistung, Kraftstoff- und Schmierölverbrauch und Prüfverfahren; Zusätzliche Anforderungen an Motoren zur allgemeinen Verwendung
ISO 3046-3:2006-06	Hubkolben-Verbrennungsmotoren - Anforderungen - Teil 3: Messungen bei Prüfungen
ISO 3046-4:2009-12	Hubkolben-Verbrennungsmotoren - Anforderungen - Teil 4: Drehzahlregelung
ISO 3046-5:2001-12	Hubkolben-Verbrennungsmotoren - Anforderungen - Teil 5: Drehschwingungen
ISO 3046-6:1990-10	Hubkolben-Verbrennungsmotoren - Anforderungen - Teil 6: Überdrehzahlschutz
ISO 8178-1:2017-04	Hubkolben-Verbrennungsmotoren - Abgasmessung - Teil 1: Messung der gasförmigen Emission und der Partikelemission auf dem Prüfstand
ISO 8178-4:2017-04	Hubkolben-Verbrennungsmotoren - Abgasmessung - Teil 4: Stationäre und transiente Prüfzyklen für verschiedene Motorverwendungen
DIN 6280-10:1986-10	Hubkolben-Verbrennungsmotoren - Stromerzeugungsaggregate mit Hubkolben- Verbrennungsmotoren; Stromerzeugungsaggregate kleiner Leistung; Anforderung und Prüfung
MARPOL 73/78	Internationales Übereinkommen von 1973 zur Verhütung der Meeresverschmutzung durch Schiffe
2011/65/EU	Beschränkung der Verwendung bestimmter gefährlicher Stoffe in Elektro- und Elektronikgeräten
Dokumentationsbevollmächtigter	Christian Riemer
	Fischer Panda GmbH Otto-Hahn-Straße 40
	33104 Paderborn
Paderborn, den10.11.2021	
	A. Baller
Ort, Datum	DiplIng. Stephan Backes (Geschäftsführer)
Paderborn, den10.11.2021	Boris Schowsuft
Ort, Datum	Boris Schönberger (Prokurist)

Seite/Page 36 - Kapitel/Chapter 6: 27.5.24

7. Panda 15000i PMS Generator

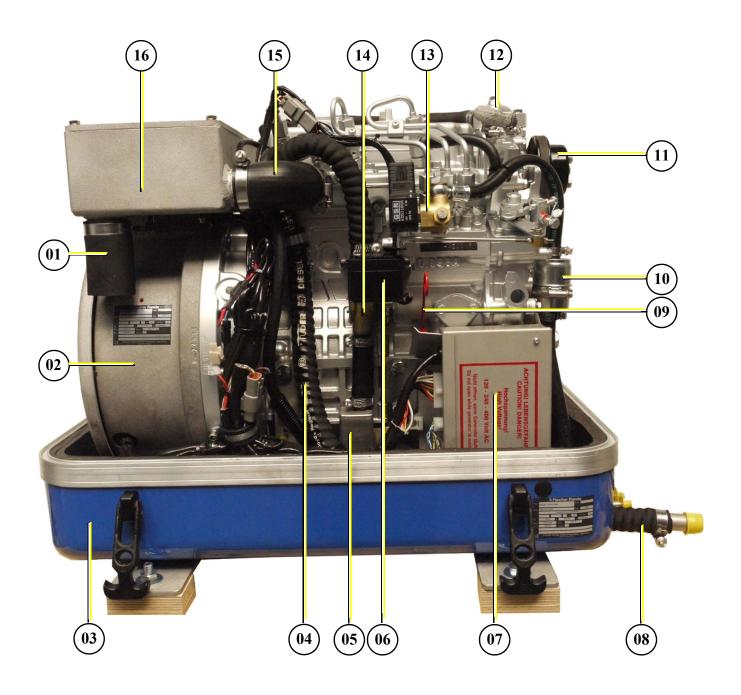
7.1 Typenschild am Generator


Fig. 7.1-2: Typenschild

7.2 Beschreibung des Generators

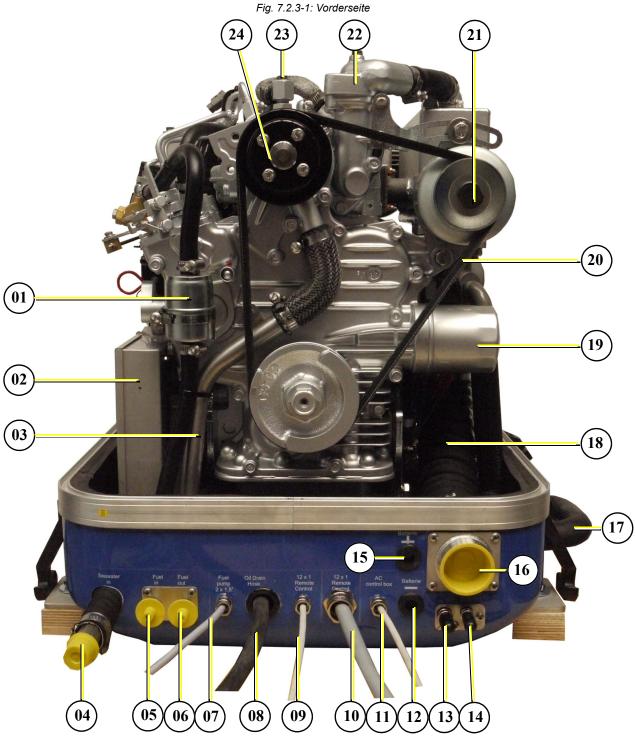
7.2.1 Seitenansicht Rechts


- 01) Thermostatgehäuse
- 02) DC-Lichtmaschine 12 V
- 03) Öldruckschalter
- 04) Ölfilter
- 05) Schalldämmkapsel Unterteil
- 06) Seewasser Einspritzleitung
- 07) Abgasschlauch
- 08) Thermosensor

- 09) Anschluss für externes Belüftungsventil
- 10) Anlasser
- 11) Frischwasser Rücklaufleitung
- 12) Entlüftungsleitung zum externen Ausgleichsbehälter
- 13) Generatorgehäuse mit Wicklung
- 14) Laderegler für DC Lichtmaschine
- 15) Luftansauggehäuse
- 16) Wassergekühlter Abgaskrümmer

7.2.2 Linke Seite

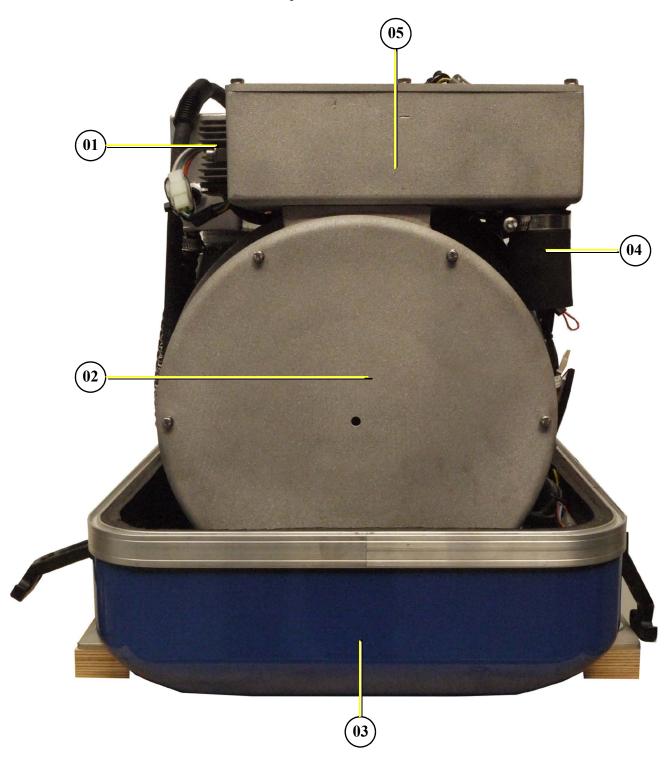
Fig. 7.2.2-1: Linke Seite



- 01) Ansaugluft Eintritt
- 02) Generatorwicklung mit Gehäuse
- 03) Schalldämmkapsel Unterteil
- 04) Seewasser Vorlaufleitung
- 05) Impellerfilter
- 06) Stellmotor
- 07) Gehäuse mit iControl Platine (NICHT ÖFFNEN!)
- 08) Seewasser Einlass

- 09) Ölpeilstab
- 10) Kraftstofffilter
- 11) Riemenscheibe für interne Kühlwasserpumpe
- 12) Thermostatgehäuse
- 13) Kraftstoffmagnetventil
- 14) Seewasserpumpe
- 15) Ansaugschlauch, Luftansauggehäuse Ansaugkrümmer
- 16) Luftansauggehäuse

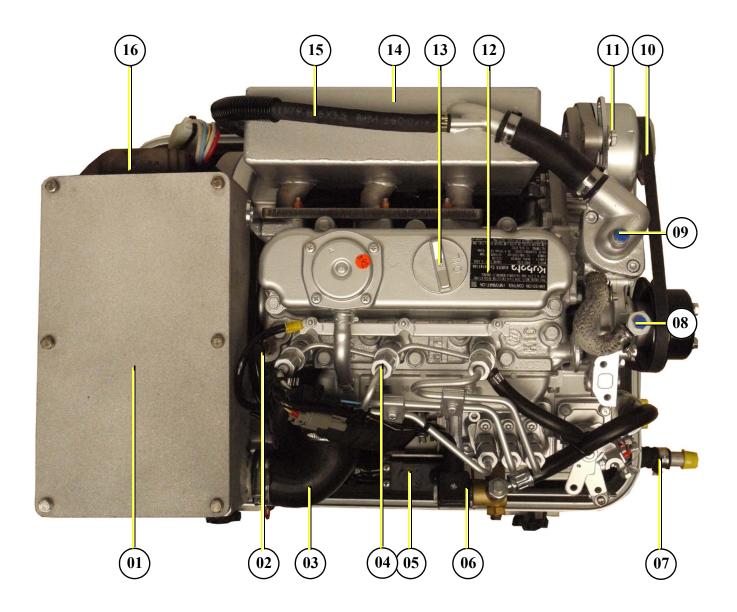
7.2.3 Vorderseite


- 01) Kraftstoffilter
- 02) Gehäuse mit iControl Platine (NICHT ÖFFNEN!)
- 03) Kühlwasserpumpe, Wäremtauscher Wasserpumpe
- 04) Seewass Einlass
- 05) Kraftstoff IN
- 06) Kraftstoff OUT
- 07) Kabel für Kraftstoffpumpe
- 08) Ölablassschlauch
- 09) Kabel für iControl Panel
- 10) Kabel für Generatorausgang AC out (zum Inverter)
- 11) Kabel für Invertersteuerung
- 12) Kapseldurchführung für Starterbatteriekabel (-)

- 13) Anschluss vom externen Ausdehnungsgefäß
- 14) Anschluss zum externen Ausdehnungsgefäß
- 15) Kapseldurchführung für Starterbatteriekabel (+)
- 16) Abgas Ausgang
- 17) Anschluss vom externen Belüftungsventil
- 18) Abgasschlauch
- 19) Ölfilter
- 20) Keilriemen
- 21) DC-Lichtmaschine 12V
- 22) Thermostatgehäuse mit Belüftungsschraube
- 23) Belüftungsschraube interne Kühlwasserpumpe24) Riemenscheibe für interne Kühlwasserpumpe

7.2.4 Rückseite

Fig. 7.2.4-1: Rückseite

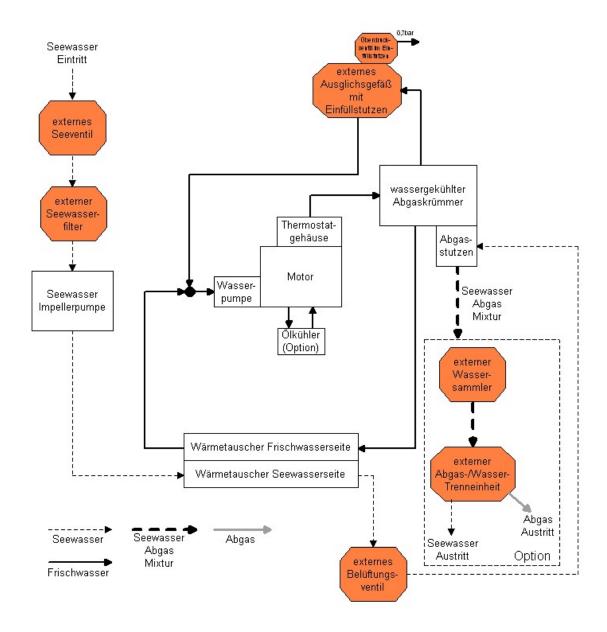

- 01) Laderegler für DC Lichtmaschine
- 02) Generatorstirndeckel
- 03) Generator Unterteil

- 04) Eintritt Ansaugluft
- 05) Luftansauggehäuse

7.2.5 Draufsicht

Fig. 7.2.5-1: Draufsicht

- 01) Luftansauggehäuse
- 02) Thermoschalter Zylinderkopf
- 03) Ansaugschlauch, Luftansauggehäuse Ansaugkrümmer
- 04) Einspritzdüsen
- 05) Stellmotor
- 06) Kraftstoffmagnetventil
- 07) Seewasser Einlass
- 08) Entlüftungsschraube interne Kühlwasserpumpe
- 09) Entlüftungsschraube Thermostatgehäuse
- 10) Keilriemen
- 11) DC Lichtmaschine 12 V
- 12) Ventildeckel
- 13) Motoröleinfüllstutzen
- 14) Wassergekühlter Abgaskrümmer
- 15) Entlüftungsleitung zum externen Ausgleichsgefäß
- 16) Laderegler für DC Lichtmachine



7.3 Detailansicht der Baugruppen

7.3.1 Fernbedienpanel - Siehe iControl Panel Datenblat

7.3.2 Komponenten des Kühlwassersystems (See- und Frischwasser)

Fig. 7.3.2-1: Kühlwassersystem

7.3.3 Komponenten des Kraftstoffsystem, Ansaugluftführung und Abgassystems

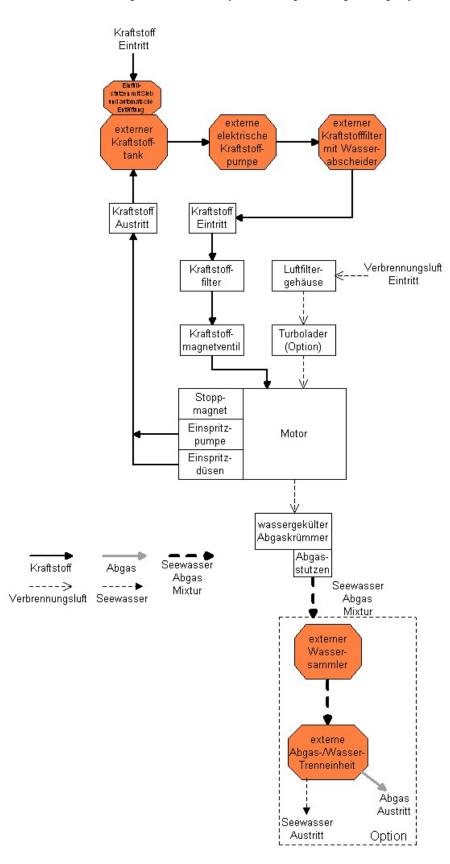
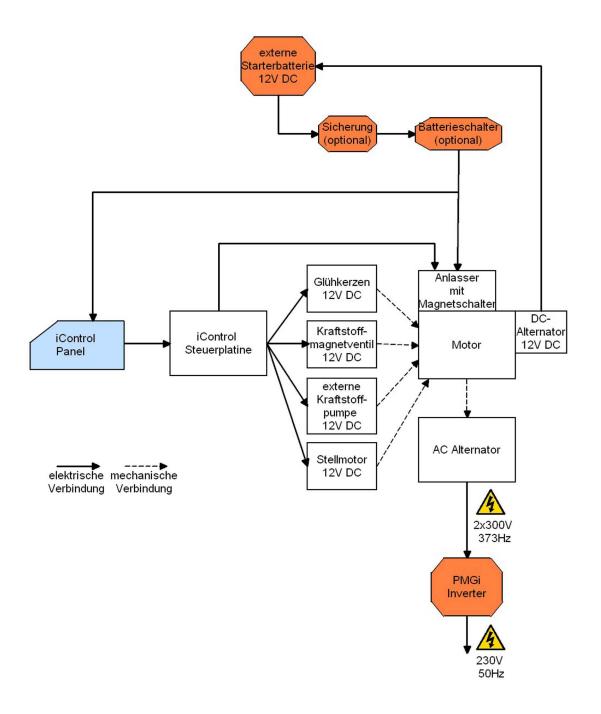
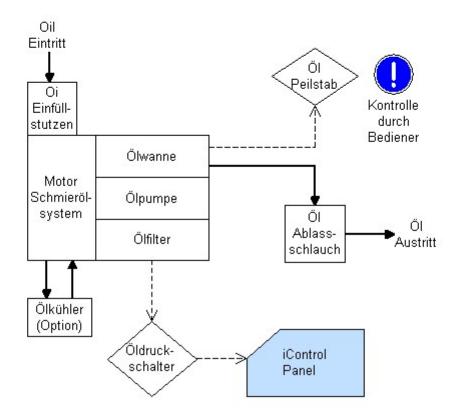



Fig. 7.3.3-1: Kraftstoffsystem, Ansaugluftführung und Abgassystem

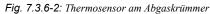
7.3.4 Komponenten des elektrischen Systems


Fig. 7.3.4-1: Elektrisches System

7.3.5 Komponenten des Schmierölsystems

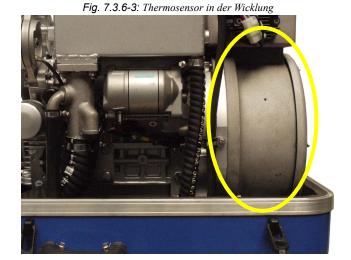
Fig. 7.3.5-1: Schmierölsystem

7.3.6 Sensoren und Schalter zur Betriebsüberwachung


Thermoschalter am Motor

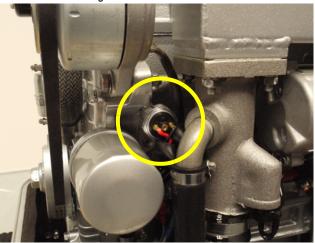
Der Schalter überwacht die Motortemperatur.

Thermosensor am Abgaskrümmer


Wenn die Impellerpumpe ausfällt und kein Seewasser mehr liefert, wird dieser Punkt sehr heiß.

Thermosensor Wicklung

Ein weiterer Sensor ist zur Überwachung in der Wicklung verbaut.



Öldruckschalter

Um das Motorölsystem zu überwachen, wird ein Öldruckschalter eingesetzt.

Fig. 7.3.6-4: Öldruckschalter

7.4 Betriebsanleitung - Siehe Panda iControl Panel Datenblatt

- 7.4.1 Tägliche Überprüfung vor dem Start Siehe iControl Panel Datenblatt
- 7.4.2 Starten des Generators Siehe iControl Panel Datenblatt
- 7.4.3 Stoppen des Generators Siehe iControl Panel Datenblatt

8. Installationsanleitung

Das PMGi Kabel muss am Generator und am PMGi Gerät ACHTUNG! mit geeigneten Schutzvorrichtungen gesichert sein.

Alle Anschlussleitungen und Anweisungen für den Einbau sind für "Standard" Einbausituationen ausgelegt und ausreichend.

Da Fischer Panda die genaue Einbau- und Betriebssituation (z. B. besondere Fahrzeugformel, hohe Fahrgeschwindigkeiten und besondere Einsatzbedingungen o. ä.) nicht bekannt sind, kann diese Installationsvorschrift als Vorlage und Beispiel dienen. Die Installation muss von einem entsprechenden Fachmann nach den örtlichen Begebenheiten und Vorschriften entsprechend angepasst

Schäden durch eine falsche, nicht angepasste Installation/ Einbau sind nicht durch die Garantie abgedeckt. Achtung!: System richtig auslegen.

8.1 Personal

und ausgeführt werden.

Die hier beschriebene Installation darf nur von speziell ausgebildetem Fachpersonal oder durch Vertragswerkstätten (Fischer Panda Service Points) ausgeführt werden.

Um Schäden an den Geräten zu vermeiden, sind bei Arbeiten am Generator immer alle Verbraucher abzuschalten.

Achtung!: Alle Verbraucher abschalten.

8.2 Aufstellungsort

8.2.1 Vorbemerkungen

- · Frischluftzufuhr für Verbrennungsluft muss ausreichend sein.
- Es muss sichergestellt werden, dass die Kühlluftzufuhr von unten bzw. seitlich ausreichend ist.
- · Seeventil muss bei Betrieb geöffnet sein.
- Der Generator darf nur von Fachpersonal geöffnet werden.
- Bedienung des Generators nur durch eingewiesenes Personal.

8.2.2 Einbauort und Fundament

Da die Fischer Panda Generatoren wegen ihrer besonders geringen Außenabmessungen den Einbau auch in sehr beengten Raumverhältnissen ermöglichen, werden sie manchmal an schwer zugänglichen Stellen installiert. Es ist zu berücksichtigen, dass auch ein wartungsarmer Generator zumindest von der Stirnseite (Schwungrad, Keilriemen, Impellerpumpe) und der Serviceseite (Stellmotor, Ölpeilstab) gut zugänglich sein muss, da z. B. trotz der automatischen Öldruckkontrolle eine regelmäßige Überprüfung des Motorölstands erforderlich ist.

Der Generator sollte nicht in der Nähe von leichten Wänden montiert werden, die durch Luftschall in Resonanzschwingungen geraten können. Ist dies nicht anders möglich, sollte man diese Flächen mit Schwerschicht Material auskleiden, da so die Masse und damit das Schwingverhalten verändert wird.

Man sollte vermeiden, den Generator auf einer glatten Fläche mit geringer Masse (z.B. Sperrholzplatte) zu montieren. Dies wirkt im ungünstigen Fall wie ein Verstärker auf die Luft-Schallwellen. Eine Verbesserung erreicht man dadurch, dass man diese Flächen durch Rippen verstärkt. Außerdem sollten auch Durchbrüche gesägt werden, welche die Fläche unterbrechen. Das Verkleiden der umgebenden Wände mit einem Schwerschicht Material plus Schaumstoff verbessert die Bedingungen zusätzlich.

Da der Motor seine Verbrennungsluft über mehrere Bohrungen im Kapselboden ansaugt, muss der Kapselboden mit ausreichendem Freiraum zum Fundament montiert werden, um die Luftzufuhr zu gewährleisten (mindestens 12 mm $(\frac{1}{2})$).

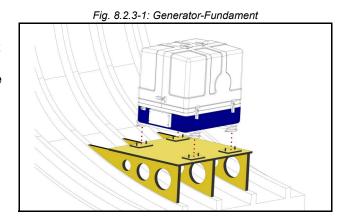
Der Generator saugt seine Luft aus dem umgebenden Maschinenraum. Daher muss dafür gesorgt werden, dass ausreichende Belüftungsöffnungen vorhanden sind, so dass der Generator nicht überhitzen kann.

Die Ausgangsleistung des Generators ist auf folgende Daten bezogen:

Umgebungstemperatur: 20°C

Luftdruck:1000 mbar (100 m über NN)

Seewassertemperatur: 20°C


Rel. Luftfeuchte: 30% zur Umgebungstemperatur

Kraftstofftemperatur: bis zu 20°C

Abweichungen von diesen Daten, z.B. eine Umgebungstemperatur von 40°C aufgrund des Einbaus in einen Maschinenraum/Fahrzeug mit zu geringer Belüftung, führen zu einer Änderung der Ausgangsleistung (Derating).

8.2.3 Hinweis zur optimalen Schalldämmung

Das geeignete Fundament besteht aus einem stabilen Rahmen, auf den der Generator mittels Schwingungsdämpfern befestigt wird. Da das Aggregat so nach unten "frei" ist, kann die Verbrennungsluft ungehindert angesaugt werden. Außerdem entfallen die Vibrationen, die bei einem geschlossenen Boden auftreten würden.

8.3 Anschlüsse am Generator

Innerhalb der Kapsel sind alle elektrischen Zuleitungen fest am Motor und am Generator angeschlossen. Dies gilt auch für die Kraftstoffleitungen und die Kühlwasserzuleitungen.

Die elektrischen Anschlüsse müssen unbedingt nach den jeweils gültigen Vorschriften verlegt und ausgeführt werden. Dies gilt auch für die verwendeten Kabelmaterialien. Die mitgelieferten Kabel sind nur für eine "geschützte" Verlegung (z.B. im Rohr) bei einer Temperatur bis max. 70°C (160°F) zugelassen. Das Bordnetz muss ebenfalls mit allen erforderlichen Sicherungen ausgestattet werden.

ACHTUNG!: Lebensgefahr - Hochspannung



Die nachfolgenden Abbildungen der Anschlüsse sind Beispielhaft für einen Fischer Panda Generator. Die original Anschlüsse und Positionen sind im Kapitel "Der Panda Generator" beschrieben.

Hinweis

Fig. 8.3-1: Generator Anschlüsse - Beispiel

- Seewasser Einlass
- Kraftstoffzulauf
- 3. Kraftstoffrücklauf
- Elektrische Leitungen für externe Dieselpumpe
- 5. Motoröl Ablassschlauch
- Elektrische Leitung für iControl Panel
- 7-Elektrische Leitung für Generatorausgang AC out
- Elektrische Leitung für PMGi control
- Generator Starter-Batterie negativ (-)
- 10. Generator Starter-Batterie positiv (+)
- 11. Abgas Ausgang
- 12. Anschluss vom externen Ausgleichgefäß
- 13. Anschluss zum externen Ausgleichgefäß

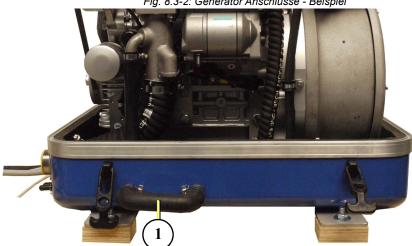
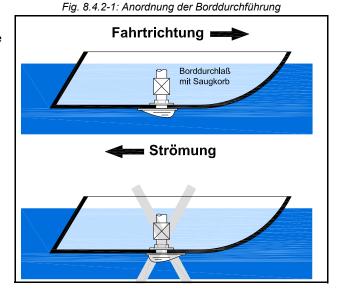


Fig. 8.3-2: Generator Anschlüsse - Beispiel

Anschluss externes Belüftungsventil

Anschluss des Kühlwassersystems - Seewasser 8.4

8.4.1 Allgemeine Hinweise


Der Generator muss mit einer separaten Zuleitung versorgt werden und sollte nicht an das Kühlwassersystem anderer Motoren angeschlossen werden. Die folgenden Installationsvorschriften müssen unbedingt beachtet werden:

8.4.2 Anordnung der Borddurchführung bei Yachten - Schema

Es ist auf Yachten üblich, für die Kühlwasseransaugung einen Borddurchlass mit "Saugkorb" zu verwenden. Um den Wasserzulauf zu verstärken, wird der Saugkorb oft gegen die Fahrtrichtung montiert.

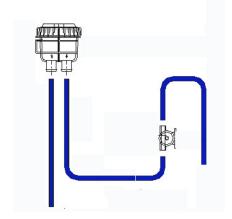
Dieser Saugkorb darf beim Generator auf keinen Fall in die Fahrtrichtung zeigen, da sich bei schneller Fahrt ein derartiger Gegendruck bilden kann, dass Seewasser durch den Impeller gedrückt wird und den Generator unter Wasser setzt.

8.4.3 Qualität der Seewasseransaugleitung

Um den Ansaugwiderstand in der Leitung zur Pumpe so niedrig wie möglich zu halten, muss der Seewasserzulaufschlauch einen Querschnitt von mindestens den Innendurchmesser des Seewasseranschlusses aufweisen. Das gilt auch für die Installationskomponenten wie Borddurchlass, Seeventil, Seewasserfilter etc.

Die Ansaugleitung muss so kurz wie möglich ausgelegt werden. Der Borddurchlass (Seewasserzulauf) sollte dementsprechend in der Nähe des Generatorstandortes liegen.

Nach der Inbetriebnahme muss die Kühlwassermenge gemessen werden (z.B. durch Auffangen am Auspuff). Die Durchflussmenge sowie den notwendigen Querschnitt der Kühlwasserleitung entnehmen Sie bitte dem Anhang dieses Handbuches.


8.4.4 Einbau des Generators über der Wasserlinie

Beim Einbau des Generators muss unbedingt darauf geachtet werden, dass die Impellerpumpe gut zugänglich ist.

Wenn der Generator über der Wasserlinie installiert wird, ist mit einem stärkeren Impellerverschleiß zu rechnen, da die Pumpe nach dem Start einige Sekunden trocken läuft. Damit die Pumpe nur kurz Luft ansaugt, sollte der Seewasserschlauch so nah wie möglich am Seewassereingang des Generators eine Schleife beschreiben. Durch das Seewasser wird der Impeller geschmiert, und die Lebensdauer erhöht sich.

Fig. 8.4.4-1: Schleife in der Kühlwasserleitung vor dem Impeller

Durch die Installation eines Rückschlagventils in der Seewasser-Zulaufleitung, die sich unter der Wasserlinie befindet, kann dieses Problem ein wenig eingeschränkt werden.

Man darf auf keinen Fall jahrelang den Impeller wechseln, ohne die alte Pumpe ebenfalls auszutauschen.

Hinweis:

Wenn der Dichtring innerhalb der Pumpe defekt ist, läuft Seewasser in die Kapsel des Generators. Eine Reparatur ist dann sehr kostspielig.

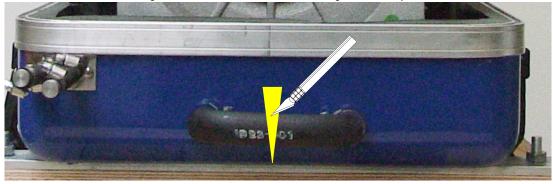
Es sollten sich immer Ersatzimpeller und auch eine Ersatzpumpe an Bord befinden.

8.4.4.1 Seewasser Installatiosschema

2 WassereInlaß Belüftungsventil Air valve Antisyphon Bordventil Kugelhahn Ausgleichsbehälter Expansion a.... Vase d'expansion Rückschlagventll Non-return valve Generator Kühlwasserfilte 600 mm Abgaskrümmer Coude d'echappen 50 2 Wasserlinie Water line Ligne de flottaison If generator installed in the middle line of the ship, if A < 0, install air valve If generator installed in the side of the ship, if A < 600 mm, install air valve **Panda PMS** If B >800 mm, install extra electric seawater pump Kühlwasserschema Cooling water schematic Implantation circuit eau de mer in Fischer Panda WG.1077e02

Fig. 8.4.4.1-1: Installationsschema Seewasserkühlung über Wärmetauscher

8.4.5 Einbau des Generators unter der Wasserlinie


Wenn der Generator nicht mindestens 600 mm über der Wasserlinie angebracht werden kann, muss unbedingt ein Belüftungsventil in die Seewasserleitung montiert werden.

Bei Aufstellung neben der "Mittschiffslinie" muss auch eine mögliche Krängung berücksichtigt werden! Der Wasserschlauch für das externe Belüftungsventil an der Rückseite der Kapsel wird durchtrennt und an beiden Enden jeweils mit einem Verbindungsnippel durch ein Schlauchende verlängert. Beide Schlauchenden müssen außerhalb der Kapsel zu einem Punkt - möglichst 600 mm über der Wasserlinie in der Mittschiffslinie - herausgeführt werden. Das Ventil wird an der höchsten Stelle mit den beiden Schlauchenden verbunden. Wenn das Ventil verklemmt ist, kann die Kühlwasserleitung nach dem Stopp des Generators nicht belüftet werden, die Wassersäule wird nicht unterbrochen und das Wasser kann in den Brennraum des Motors eindringen. Dieses führt kurzfristig zur Zerstörung des Motors!

Fig. 8.4.5-1: Belüftungsventil

Fig. 8.4.5-2: Gummischlauch für Belüftungsventil - Beispiel

Der Gummischlauch für das externe Belüftungsventil wird durchgeschnitten...

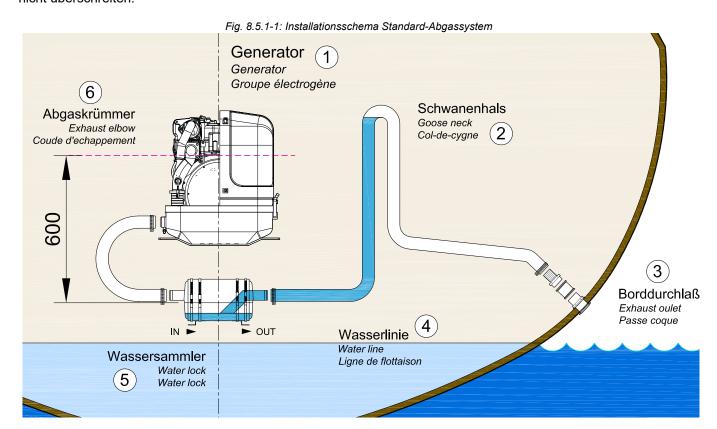
...und nach oben gebogen.

Nun werden die beiden Enden jeweils mit einem Schlauch verlängert und in einer Höhe von ca. 600 mm über der Wasserlinie ein Belüftungsventil angebracht.

27.5.24

8.4.5.1 Seewasser Installationsschema

679 Abgaskrümmer Exhaust elbow Coude d'echappement Kühlwasserschema Cooling water schematic Implantation circuit eau de mer Panda PMS WG 1077e01 Groupe électrogène Generator Generator Belüftungsventil Air valve Antisyphon mm 009 nim Wasserlinie Water line Ligne de flottaison Ausgleichsbehälter Expansion tank Vase d'expansion mm 00S nim Kühlwasserfilter Water strainer Filtre eau mer Bordventil Kugelhahn Schlauchanschluss Wassereinlaß Water inlet Passe coque Rückschlagventil Non-retum valve Clapet anti retour Hose socket Raccord cannelé Otto-Hahn-Str. 32-34 D-33104 Paderborn Tel.: (05264) 9202-0 Fax (05264) 9202-92 info@itscherpanda.de www.fischerpanda.de mm 50 min mm 002 xem


Fig. 8.4.5.1-1: Beispiel Seewasser Installationsschema

8.5 Installation des Standard-Abgassystems - Schema

8.5.1 Auslegung des Abgassystems

Die Auspuffanlage des Generators muss getrennt von der Auspuffanlage der Hauptmaschine oder eines anderen Aggregats durch die Bordwand ins Freie geführt werden. In der Fischer Panda Zubehörliste wird ein Spezial-Wassersammler angeboten, der gleichzeitig auch eine besonders gute Geräuschdämpfung bewirkt. Der Wassersammler sollte so nah wie möglich am Generator und an der tiefsten Stelle des Auspuffsystems installiert werden. Er muss so groß bemessen sein, dass darin das Kühlwasser vom höchsten Punkt (normalerweise Schwanenhals) bis zum tiefsten Punkt aufgefangen wird und nicht in die Maschine steigen kann. Die Abgasleitung ist aus der Kapsel fallend zum Wassersammler zu führen. Danach führt die Leitung steigend über den Schwanenhals zum Schalldämpfer (siehe Zeichnung). Der Schwanenhals muss auf der Mittelachse des Schiffes liegen. Damit der Abgasgegendruck nicht zu groß wird, sollte die Gesamtlänge der Auspuffleitung 6 m möglichst nicht überschreiten.

8.6 Einbau des "Wassersammlers"

Achten Sie auf die richtige Durchflussrichtung durch den Wassersammler.

Hinweis!:

Eine ungünstige Einbaulage des Wassersammlers kann dazu führen, dass Seewasser in den Brennraum des Dieselmotors gelangt und zu irreversible Schäden führt.

Hierzu ist klarzustellen:

Wenn Seewasser in den inneren Bereich des Motors gelangt, ist das nicht durch Fehlkonstruktionen des Generators oder durch Fehler am Motor selbst möglich. Dies kann nur durch die Abgasleitung in den Verbrennungsraum und dadurch in den Motor gelangen. Dabei spielt die Position des Generators und des Wassersammlers sowie die Anordnung der Kühlwasser- und Abgasleitungen die entscheidende Rolle.

Wenn der Wassersammler ungünstig angeordnet ist, kann das zurücklaufende Kühlwasser in der Abgasleitung so hoch ansteigen, dass der Abgasstutzen erreicht wird. Da bei stehendem Motor immer mindestens ein Auslassventil offen steht, hat das Seewasser freien Zugang zum Verbrennungsraum. Dieses Seewasser läuft dann durch Kapillarwirkung an den Kolben vorbei und gelangt so sogar bis in das Motoröl.

Wenn festgestellt wird, dass der Motorölstand ungewöhnlich hoch ist und/oder das Öl eine gräuliche Farbe zeigt, darf der Motor nicht mehr benutzt werden. Das ist ein sicheres Zeichen dafür, dass Kühlwasser in die Ölwanne gelangt ist. Wenn der Motor unter diesen Bedingungen in Betrieb genommen wird, vermischt sich das Wasser mit dem Öl, und es kommt zur Emulsion. Das Öl wird dann sehr schnell so dickflüssig wie eine Paste. In dieser Phase werden die feinen Ölkanäle verstopft und wenige Augenblicke später geht die Maschine wegen der mangelnden Schmierung zu Bruch. Bevor es dazu kommt, sollte man sofort einen Ölwechsel vornehmen. Da das Wasser aber nur durch den Brennraum in den Motor gelangen kann, muss man davon ausgehen, dass im Bereich der Kolbenringe Korrosion einsetzt. Diese Folgen müssen mit einem Motorfachmann beraten werden. Es wird sinnvoll sein, als erste Maßnahme unverzüglich reichlich Kriechöl durch den Ansaugstutzen einzusprühen und dabei den Motor langsam mit dem Anlasser zu drehen.

Das Kühlwasser kann sowohl durch die Abgasleitung selbst aber auch durch die Kühlwasserzuführung in den Abgasbereich gelangen.

8.6.1 Mögliche Ursachen für Wasser in der Abgasleitung

8.6.1.1 Mögliche Ursache: Abgasleitung

Falls die Ursache in der Abgasleitung selbst liegt, sind folgende Punkte an der Abgasleitung zu überprüfen:

- a. Position des Wassersammlers zu hoch. Das Wasser erreicht den Abgaskanal.
- b. Position des Wassersammlers ist zu weit von der Generator-Mitte entfernt. Das Wasser erreicht bei Schräglage den Abgaskanal.
- c. Wassersammler zu klein bezogen auf die Länge der Abgasleitung.

8.6.1.2 Mögliche Ursache: Kühlwasserleitung

Die Kühlwasser-Zuführung muss, wenn der Generator nicht eindeutig 600 mm über der Wasserlinie installiert ist, mit einem "Belüftungsventil" ausgestattet werden, welches mindestens 600 mm über die Wasserlinie hinausgeführt wird. Diese Position muss auch bei jeder Schräglage gewährleistet sein. Deswegen sollte das Belüftungsventil in der Mitte des Schiffes angeordnet sein, so dass es bei Schräglage nicht auslenken kann.

- a) Position des Belüftungsventils zu niedrig. Das Wasser läuft bei Schräglage in den Abgasbereich.
- b) Position des Belüftungsventils ist zu weit aus Schiffsmittellinie entfernt. Das Wasser erreicht bei Schräglage den Abgasbereich.
- c) Belüftungsventil arbeitet nicht, weil es klemmt oder durch Schmutz verklebt ist (die Funktion des Belüftungsventils muss regelmäßig geprüft werden).

Da es bei der Verlegung der Abgasleitung immer wieder dazu kommt, dass Risiken für die Funktion nicht erkannt werden, beziehen sich die nachfolgenden Ausführungen ausdrücklich auf die Abgasleitung. Hier spielt die Lage, Größe und Position des "Abgaswassersammlers" eine sehr wichtige Rolle:

8.6.2 Einbauort für den Abgaswassersammler

Bei einer wassergekühlten Auspuffanlage muss strikt darauf geachtet werden, dass unter keinen Umständen Kühlwasser aus der Abgasleitung in den Bereich des Abgaskrümmers am Motor gelangen kann. Falls dieses geschieht, kann das Kühlwasser durch ein offenstehendes Auslassventil in den Verbrennungsraum gelangen. Dies würde zu irreparablen Schäden am Motor führen.

Da man bei Segelyachten zusätzlich mit der Schräglage rechnen muss, hat die Position des Wassersammlers eine sehr große Bedeutung. Generell kann man sagen:

Je tiefer der Wassersammler unterhalb des Generators angeordnet ist, um so besser ist der Schutz vor dem Eindringen von Wasser in den Verbrennungsraum.

In der unten stehenden Zeichnung wird der Abstand zwischen dem kritischen Punkt am Abgaskrümmer und dem höchstzulässigen Niveau des Wassers in der Abgasleitung mit 600 mm angegeben. Dieser Abstand sollte als Mindestabstand verstanden werden.

8.6.3 Das Volumen des Abgaswassersammlers

Der Abgaswassersammler muss so groß bemessen sein, dass er die gesamte Menge des von der Abgasleitung zurückfließenden Wassers aufnehmen kann. Die Wassermenge hängt von der Länge (L) und dem Querschnitt der Abgasleitung ab. Während der Dieselmotor läuft, wird kontinuierlich Kühlwasser in das Abgassystem eingespritzt und durch den Abgasdruck mit den Abgasen nach draußen befördert. Wenn der Motor abgestellt wird, sinkt die Drehzahl des Dieselmotors relativ schnell. Dabei wird der Punkt erreicht, wo der Druck des Abgases nicht mehr ausreicht, um das Kühlwasser nach draußen zu befördern. Alles Kühlwasser, das sich dann noch in der Leitung befindet, läuft in den Wassersammler zurück. Gleichzeitig wird vom Dieselmotor selbst auch weiterhin Kühlwasser durch die Kühlwasserpumpe befördert, solange dieser sich noch dreht.

Der Wassersammler muss unbedingt so groß bemessen sein, dass er die gesamte Menge dieses Kühlwassers aufnimmt und dass dabei die vorgeschriebene Höhendifferenz von 600 mm bis zum kritischen Punkt am Abgaskrümmer nicht überschritten wird.

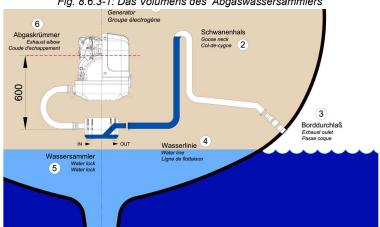
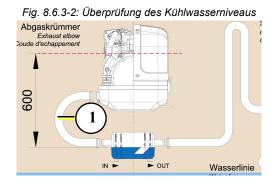



Fig. 8.6.3-1: Das Volumens des Abgaswassersammlers

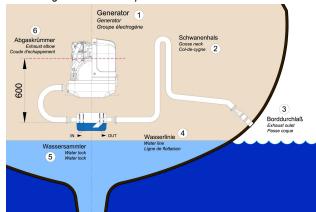
Wenn Zweifel bestehen, kann eine Überprüfung relativ einfach dadurch vorgenommen werden, dass vorübergehend ein klarsichtiger Schlauch (1) als Abgasschlauch verwendet wird. Dabei lässt sich das Kühlwasserniveau sehr leicht kontrollieren.

8.6.3.1 Ideale Position des Wassersammlers

Die ideale Position für den Wassersammler ist mittig unter dem Generator.

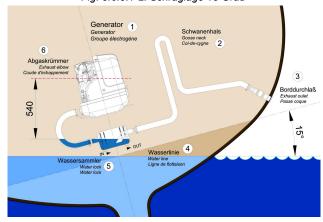
Nur in dieser Position ist sichergestellt, dass sich das Wasserniveau bei Schräglage nicht durch Ausweichen des Wassersammlers aus der Mittellinie heraus stark verändern kann. Wichtiger Hinweis!

Nachfolgende Zeichnungen gelten nur für den stehenden Generator.


Idealposition des Wassersammlers

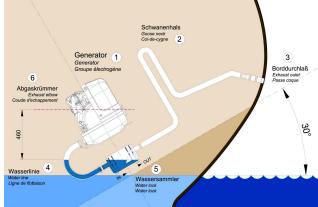
Auf Darstellung Fig. 8.6.3.1-1 ist der Wassersammler mittig unter dem Generator montiert. Bei Schräglage verändert sich die Position des Wassersammlers bezogen zu dem kritischen Punkt an der Abgasleitung nur sehr geringfügig.

Achtung!


Fig. 8.6.3.1-1: Idealposition des Wassersammlers

Schräglage 15 Grad - Fig. 8.6.3.1-2

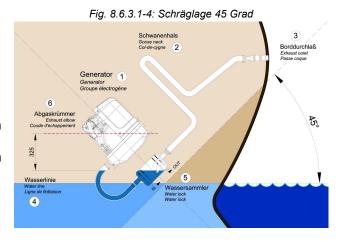
Der Abstand vom Abgaskrümmer zur Wassersäule hat sich auf 540 mm verringert.


Fig. 8.6.3.1-2: Schräglage 15 Grad

Schräglage 30 Grad - Fig. 8.6.3.1-3

Der Abstand des Wasserspiegels verändert sich auch bei der idealen Einbauposition so, dass nur noch 458 mm Abstand besteht. Damit ist der kritische Abstand bereits unterschritten.

Fig. 8.6.3.1-3: Schräglage 30 Grad



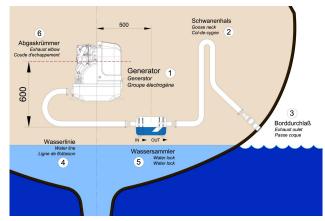
Schräglage 45 Grad - Fig. 8.6.3.1-4

In diesem Falle ist der Wasserspiegel so hoch gestiegen, dass der Abstand nur noch 325 mm beträgt.

Bei der extremen Schräglage von 45 Grad besteht also selbst in der idealen Einbauposition noch immer die Gefahr, dass durch starkes Schwanken ("Schwappen") Wasser bis in den unmittelbaren Bereich des Abgasstutzens gelangen kann. Hieraus wird erkennbar, dass der Abstand von 600 mm ein Mindestmaß darstellt, bei dem selbst bei idealer Einbauweise bei starker Schräglage auch noch die Gefahr auftreten kann, dass Wasser bei starken Bewegungen bis in den Abgaskrümmer schwappen kann.

Zusammenfassung:

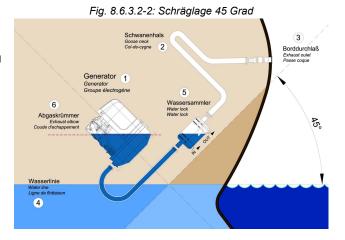
Die vorgegebene Mindesthöhe von 600 mm muss unbedingt eingehalten werden und gilt nur, wenn der Wassersammler in der idealen Einbauposition mittig unter dem Generator montiert wurde. Eine höhere Position ist dringend zu empfehlen, wenn mit der Schräglage von 45 Grad gerechnet werden muss.


8.6.3.2 Beispiel für den Einbau des Wassersammlers außerhalb der Mitte mit Darstellung der möglichen Folgen:

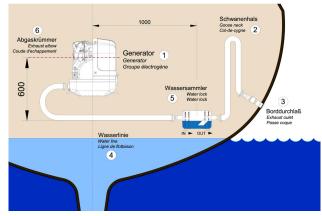
Die nachfolgenden Beispiele sind in erster Linie für den Einbau des Generators mit dem Wassersammler bei Segelyachten relevant. Bei Motoryachten muss mit einer Veränderung der Einbaulage durch Schräglage nicht gerechnet werden. Hier ist lediglich darauf zu achten, dass das Volumen des Wassersammlers so groß bemessen ist, dass das zurückfließende Wasser vollständig aufgenommen werden kann und dass in diesem Zustand noch der Mindestabstand von 600 mm eingehalten wird.

A) Einbau des Wassersammlers 500 mm neben der Mittellinie des Generators:

Einbau des Wassersammlers 500 mm neben der Mittellinie des Generators


Fig. 8.6.3.2-1: Wassersammler 500 mm neben der Mittellinie des Generators

Schräglage 45 Grad - Fig. 8.6.3.2-2


Der Wasserspiegel ist nun auf der gleichen Höhe wie der kritische Punkt am Abgaskrümmer. Wenn bei diesem Einbau das Schiff mit einer Schräglage von 45 Grad gesegelt wird, ist das Eindringen von Kühlwasser in den Brennraum unvermeidbar. So sind irreparable Schäden vorprogrammiert.

B) Einbauabstand zwischen Abgaswassersammler und Mittellinie des Generators 1000 mm

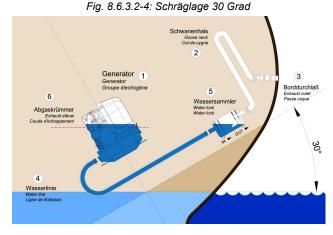

Einbauabstand zwischen Abgaswassersammler und Mittellinie des Generators 1000 mm

Fig. 8.6.3.2-3: Abgaswassersammler 1000 mm neben der Mittellinie des Generators

Schräglage 30 Grad - Fig. 8.6.3.2-4

Der Wasserspiegel ist nun auf der gleichen Höhe wie der kritische Punkt am Abgaskrümmer. Wenn bei diesem Einbau das Schiff mit einer Schräglage von 30 Grad gesegelt wird, ist das Eindringen von Kühlwasser in den Brennraum unvermeidbar. So sind irreparable Schäden vorprogrammiert.

Zusammenfassung:

Bei Segelyachten muss sehr darauf geachtet werden, dass der Wassersammler mittig unter dem Generator montiert wird, zumindest in Bezug auf die Schiffslängsachse. Dadurch wird verhindert, dass bei starker Schräglage der Wassersammler stark "ausleckt".

Das "Auslecken" des Wassersammlers führt dazu, dass der Wasserspiegel steigt und zu nahe an den kritischen Punkt am Abgaskrümmer herankommt.

8.7 Abgas-Wasser Trenneinheit

Um das Abgasgeräusch möglichst optimal zu reduzieren, wird die Verwendung eines zusätzlichen Schalldämpfers dicht vor dem Borddurchlass empfohlen. Dazu gibt es bei Fischer Panda ein Bauteil, das sowohl die Funktion eines "Abgas-Schwanenhalses" ausübt als auch die der Wassertrennung. Mit dieser "Abgas-Wasser-Trenneinheit" wird das Kühlwasser über eine separate Leitung abgeleitet. Hierdurch werden die Abgasgeräusche an der Außenseite der Yacht sehr stark vermindert. Insbesondere das "Wasserplätschern" entfällt.

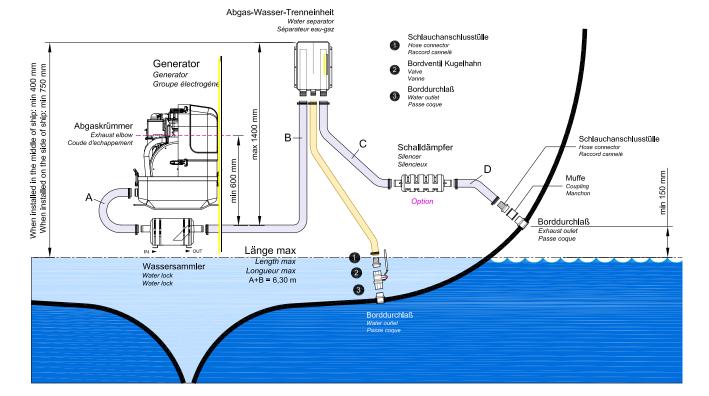


Fig. 8.7-1: Installation Abgas-Wasser Trenneinheit

8.8 Installation Abgas-Wasser-Trenneinheit- Schema

Wurde die Abgas-Wasser-Trenneinheit ausreichend hoch montiert, ist ein Schwanenhals nicht mehr erforderlich. Die Abgas-Wasser-Trenneinheit erfüllt die gleiche Funktion. Bei richtiger Installation des "Supersilent"-Abgassystems wird das Abgasgeräusch fast unhörbar sein und auch Ihren Bootsnachbarn nicht stören. Das beste Ergebnis wird erreicht, wenn die Schlauchleitung, durch die das Kühlwasser abgeleitet wird, auf möglichst kurzem Wege "fallend" direkt zum Auslass verlegt wird und dieser Auslass unter Wasser liegt.

Wenn aus bautechnischen Gründen der Borddurchlass für den Abgas-Anschluss relativ weit entfernt vom Generator montiert werden muss, sollte auf jeden Fall die Abgas-Wasser-Trenneinheit installiert werden. Der Wasserauslass muss dann aber auf kürzestem Wege nach außen geführt werden. Bei einer längeren Wegstrecke kann der Durchmesser des Abgasschlauches erweitert werden (z.B. von NW40 mm auf NW50 mm), um den Gegendruck gering zu halten. Ein "Endschalldämpfer" kurz vor dem Borddurchlass kann die nach außen dringenden Geräusche noch einmal reduzieren.

Generator
Generator
Groupe électrogène

Schwanenhals
Goose neck
Col-de-cygne

Schlauchanschlut
Hose connector
Raccord cannele

Coude d'echappement

Option

Schlauchanschlut
Hose connector
Raccord cannele

Warder lock
Water lock
Water lock
Water lock

Beispiel für eine ungünstige Installation:

- Wassersammler nicht tief genug unter dem Höhenniveau des Generators
- Abstand Wassersammler zum Schwanenhals zu groß Schema

Fig. 8.8.0-2: Expample for an unfavourable installation

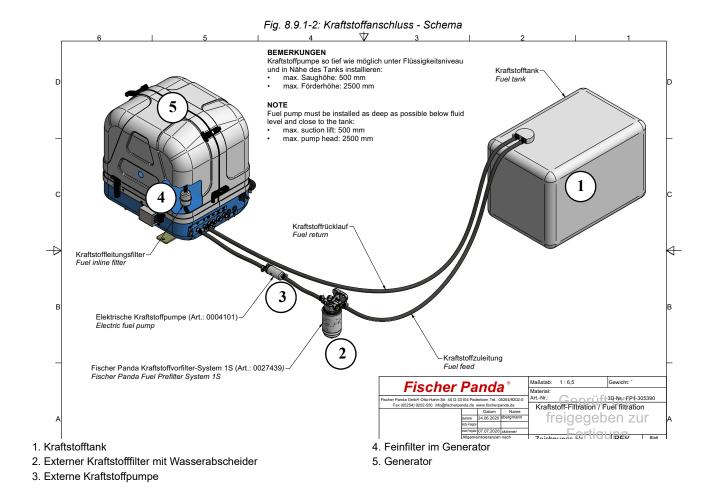
8.9 Installation des Kraftstoffsystems

8.9.1 Die folgenden Komponenten müssen installiert werden:

- Kraftstoffvorfilter mit Wasserabscheider (nicht im Lieferumfang)
- · externe Kraftstoffpumpe
- Kraftstofffeinfilter
- Rückschlagventil (nicht im Lieferumfang)
- · Drucklose Rücklaufleitung zum Tank

Die externe elektrische Kraftstoffpumpe soll in der Nähe des Tanks montiert werden.

Elektrische Kraftstoffpumpe


Mit dem Fischer Panda Generator wird normalerweise eine elektrische Kraftstoffpumpe (DC) geliefert. Die Kraftstoffpumpe muss nahe am Tank montiert werden. Der elektrische Anschluss ist am Generator vorbereitet.

Einige Generatoren (z.B. mit Deutz Dieselmotoren) haben eine motorgetriebene interner Kraftstoffpumpe. Bei diesen Generatoren ist eine elektrische Kraftstoffpumpe optional.

Fig. 8.9.1-1: Elektrische Kraftstoffpumpe

8.9.2 Anschluss der Leitungen am Tank

Generell müssen Kraftstoff-Vorlauf und Kraftstoff-Rücklauf mit einem eigenen Kraftstoffansaugstutzen am Dieseltank angeschlossen werden.

Hinweis:

Achtung!

Anschluss der Rücklaufleitung am Tagestank bis auf den Boden führen

Wenn der Generator höher als der Tank montiert wird, sollte unbedingt die Rücklaufleitung zum Tank bis auf die gleiche Eintauchtiefe in den Tank hinein geführt werden wie auch die Ansaugleitung, um zu vermeiden, dass nach dem Abschalten des Generators der Kraftstoff in den Tank zurücklaufen kann, was zu erheblichen Startschwierigkeiten nach längerem Abschalten des Generators führt.

Rückschlagventil in die Ansaugleitung

Falls die Rücklaufleitung nicht ebenfalls als Tauchrohr in den Tank hineingesetzt werden kann, sollte unbedingt durch ein Rückschlagventil in der Ansaugleitung gewährleistet werden, dass der Kraftstoff nach dem Abschalten des Generators nicht zurückfließen kann.

Der Panda Generator ist selbstentlüftend. Nach der ersten Inbetriebnahme oder nach längerer Stillstandzeit sollten aber die Hinweise "Entlüftung des Kraftstoffsystems" beachtet werden.

Rückschlagventil für die Kraftstoffrücklaufleitung

Sollte der Kraftstofftank über dem Niveau des Generators montiert sein (z.B. Tagestank), so muss ein Rückschlagventil in die Kraftstoffrücklaufleitung installiert werden um

sicherzustellen, dass durch die Rücklaufleitung kein Kraftstoff in die Einspritzpumpe geführt wird.

8.9.3 Position des Vorfilters mit Wasserabscheiders

Zusätzlich zu dem serienmäßigen Feinfilter muss außerhalb der Schalldämmkapsel in der Kraftstoffversorgungsleitung ein Vorfilter mit Wasserabscheider installiert werden (nicht im Lieferumfang enthalten).

Beispielbild

Fig. 8.9.3-1: Fischer Panda Kraftstoff Vorfilter S1 mit Wasserabscheider

8.10 Generator DC System-Installation

8.10.1 Allgemeine Sicherheitshinweise im Umgang mit Batterien

Beachten Sie die Vorschriften und Einbaurichtlinien des Achtung! Batterieherstellers.

Verwenden Sie nur vom Batteriehersteller für den Anwendungszweck zugelassene Batterien.

Diese Hinweise sind zusätzlich zu den Hinweisen des Batterieherstellers zu beachten:

- Wenn Sie an den Batterien arbeiten, sollte jemand in Hörweite sein, um Ihnen notfalls helfen zu können.
- · Halten Sie Wasser und Seife bereit für den Fall, dass Batteriesäure Ihre Haut verätzt.
- Tragen Sie Augenschutz und Schutzkleidung. Berühren Sie nicht die Augen, während Sie an den Batterien hantieren.
- Wenn Sie einen Säurespritzer auf die Haut oder Kleidung erhalten haben, waschen Sie diesen mit viel Wasser und Seife aus.
- Wenn Sie Säure in die Augen bekommen haben, sollten Sie diese sofort mit sauberem Wasser spülen, bis kein Brennen mehr spürbar ist. Suchen Sie sofort einen Arzt auf.
- Rauchen Sie niemals im Bereich der Batterien. Vermeiden Sie offenes Feuer. Im Bereich von Batterien besteht Explosionsgefahr.
- Achten Sie darauf, dass keine Werkzeuge auf die Batteriepole fallen, decken Sie diese nötigenfalls ab.
- Tragen Sie bei der Installation keinen Armschmuck oder eine Armbanduhr, womit unter Umständen ein Batteriekurzschluss erzeugt werden kann. Verbrennungen der Haut würden die Folge sein.
- Schützen Sie sämtliche Batteriekontakte gegen unbeabsichtigte Berührung.
- Für Batteriebänke: Verwenden Sie nur zyklenfeste, tiefentladefähige Batterien. Starterbatterien sind ungeeignet. Es werden Bleigel-Batterien empfohlen. Sie sind wartungsfrei, tiefenladefähig und gasen nicht.

- · Laden Sie niemals eine gefrorene Batterie.
- · Vermeiden Sie Batteriekurzschlüsse.
- Sorgen Sie für gute Ventilation der Batterie, um entstehende Gase abzuleiten.
- Batterieverbindungsklemmen müssen vor jedem Betrieb auf festen Sitz geprüft werden.
- Batterieverbindungskabel müssen sorgfältig verlegt und auf unzulässige Erwärmung unter Belastung geprüft werden. Prüfen Sie die Batterie im Bereich vibrierender Bauteile regelmäßig auf Scheuerstellen und Fehler in der Isolierung.

8.10.2 Installation der Batterieanschlussleitungen

Beachten Sie die entsprechenden Regelungen "ABYC regulation E11 AC and DC electrical systems on boats" und/oder EN ISO 10133:2000 kleine Wasserfahrzeuge, elektrisches System, Niederspannungssystem (DC)!

Achtung!

- · Der Batterieraum sowie die entsprechende Installation sind fachgerecht auszulegen.
- · Die Batterietrennung kann mechanisch oder mit einem entsprechenden Leistungsrelais erfolgen.
- Installieren Sie eine Sicherung entsprechender Größe in der Starterbatterie Plusleitung so nahe wie möglich an die Batterie, aber maximal mit 300 mm (12 inch) Abstand zur Batterie.
- Das Kabel von der Batterie muss zur Sicherung mit einem Schutzrohr / einer Schutzhülle gegen Durchscheuern gesichert werden.
- Benutzen Sie zum Anschluss selbstverlöschende und feuergeschützte Kabel, die für Temperaturen bis zu 90 °C, 195 °F ausgelegt sind.
- Verlegen Sie die Batteriekabel so, dass sie nicht durch Scheuern oder andere mechanische Beanspruchung abisoliert werden können.
- Die Batteriepole müssen gegen unbeabsichtigten Kurzschluss gesichert werden.
- Innerhalb der Kapsel des Fischer Panda Generators muss das positive Batteriekabel so verlegt werden, das es vor Hitze und Vibrationen durch eine entsprechende Schutzhülle/Schutzrohr geschützt ist. Es muss so verlegt werden, dass es rotierende oder im Betrieb heiß werdende Teile wie z.B. Riemenscheibe, Abgaskrümmer, Abgasrohr und den Motor selbst nicht berührt. Verlegen Sie das Kabel nicht zu straff, da es sonst beschädigt werden könnte.

Hinweis:

• Führen Sie nach der Installation einen Testlauf des Generators durch und überprüfen Sie die Verlegung des Batteriekabels während und nach dem Testlauf. Falls nötig führen Sie Korrekturen durch.

8.10.3 Anschluss der Starterbatterie

Panda Generatoren ab Panda 6000 haben in der Regel eine eigene Lichtmaschine/Dynamo um die Starterbatterie zu laden. Bei Generatoren ohne eigene Lichtmaschine/Dynamo ist die Starterbatterie durch ein externes Ladegerät nachzuladen.

Um große Spannungsverluste zu vermeiden, sollte die Batterie möglichst nah an den Generator installiert werden. Der Pluspol der Batterie wird an dem roten Kabel angeschlossen, der Minuspol an dem blauen Kabel.

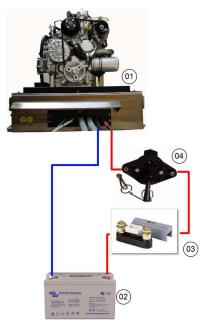
Es muss sichergestellt sein, dass zuerst die Kabel am Generator angeschlossen werden und erst dann an die Batterie. Achtung: Anschlussreihenfolge beachten

Verwenden Sie die vom Motorhersteller empfohlene

Batteriekapazität.

Prüfen Sie vor der Installation, dass die Spannung der Starterbatterie mit der Spannung des Startsystems übereinstimmt.

- z.B. 12 V Starterbatterie für 12 V Startsystem
- z.B. 24 V Starterbatterie für 24 V Startsystem (z.B. 2 x 12 V in Reihe)


Eine zu hohe Starterbatteriespannung kann Teile des Generators zerstören

Für Batterieladegeneratoren (Fischer Panda AGT-DC):

Prüfen Sie vor der Installation, dass die Spannung der Batteriebank mit der Ausgangsspannung des Generators übereinstimmt.

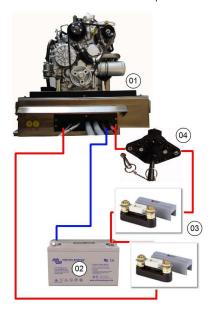
Für den Generator sollte eine eigene separate Starterbatterie montiert werden. Hierdurch wird der Generator unabhängig vom übrigen Batterienetz. So kann, wenn z.B. aufgrund einer Entladung des Bordnetzes die Batterien leer sind, noch durch die eigene Starterbatterie jederzeit wieder gestartet werden. Gleichzeitig hat die separate Starterbatterie den Vorteil, dass der Generator mit seinem elektrischen System von dem gesamten übrigen Gleichstrom-Bordnetz galvanisch getrennt ist. Das heißt, der Minuspol (-) liegt nicht an Masse. Der Generator ist somit massefrei gegenüber dem übrigen Netz.

Fig. 8.10.3-1: Starterbatterieanschluss 12 V- Schema

- 01. Generator
- 02. Starterbatterie DC

- 03. Batteriesicherung
- 04. Batteriehauptschalter

Fig. 8.10.3-2: Starterbatterieanschluss 24 V - Schema


- 01. Generator
- 02. Starterbatterie DC

03. Batteriesicherung

24 V Battery block / 24 V Batterieblock

04. Batteriehauptschalter

Fig. 8.10.3-3: Starterbatterieanschluss 12 V- Schema mit seperatem Stromanschluss für die ECU

- 01. Generator
- 02. Starterbatterie DC

- 03. Batteriesicherung
- 04. Batteriehauptschalter

Fischer Panda Generatoren sind mit einem eigenständigen Anlasser ausgestattet. Die Verbindungsleitungen von der Batterie zum DC-System muss entsprechend der Stromaufnahme des Anlassers ausgelegt werden.

Das Pluskabel (+) der Batterie wird direkt an dem Magnetschalter des Anlassers angeschlossen.

- 1. Magnetschalter für Anlasser
- 2. Anlasser

Beispielbild

Das Minuskabel (-) der Batterie ist am Motorfuß angeschlossen.

Beispielbild



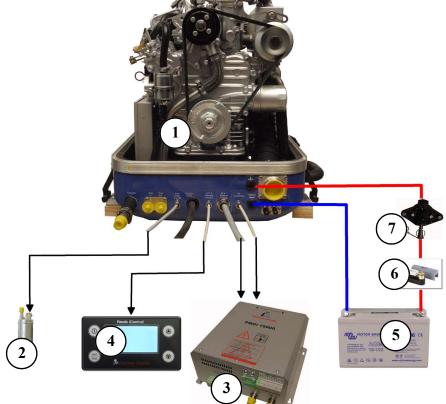
Fig. 8.10.3-5: Minuskabel der Starterbatterie

8.11 Anschluss des Fernbedienpanels - Siehe iControl Panel Datenblatt

ACHTUNG!: Lebensgefahr - Hochspannung

8.12 Generator AC System installation

Bevor das elektrische System installiert wird, beachten Sie die Sicherheitshinweise im entsprechenden Kapitel. Bei der Installation des elektrischen Systems muss unbedingt darauf geachtet werden, dass die örtlichen Vorschriften der jeweiligen


Elektroversorgungsunternehmen eingehalten werden. Hierzu gehört insbesondere die Einhaltung der Vorschriften für Schutzleiter, Personenschutzschalter etc.

Alle Absicherungen und elektrischen Schutzmaßnahmen müssen bordseitig gestellt werden.

Erforderliche Kabelquerschnitte

Folgende Kabelquerschnitte der Verbindungsleitungen sind für eine fachgerechte Installation mindestens erforderlich (see section 12.2, "Technische Daten," on page 115).

- 1. Generator
- 2. Electrische Kraftstoffpumpe 12VDC
- 3. PMGi Inverter

- 4. iControl Panel
- 5. Starterbatterie 12VDC

8.12.1 Installation PMGi Inverter - Siehe PMGi Inverter Datenblatt

8.13 Isolationstest

Nach der Installation, vor der allgemeinen Inbetriebnahme und vor Übergabe des Generators an den Kunden, muss ein Isolationstest wie folgt durchgeführt werden:

ACHTUNG!

- 1. Alle elektrischen Verbraucher ausschalten.
- 2. Der Generator wird gestartet.
- 3. Mit einem Spannungsmessgerät (Einstellen auf Volt/AC) wird die Spannung zwischen:
 - a) Gehäuse des Generators und Gehäuse PMGI
 - b) Gehäuse des Generators und Masse der Umgebung gemessen.
 - Es darf keine elektrische Spannung über 50 mV (Millivolt) anliegen.
- 4. Danach ist die installierte Schutzmaßnahme zu überprüfen. Wenn ein RCD (FI-Schutzschalter) installiert wurde, ist dieser auf Funktion zu überprüfen, und es muss sichergestellt sein, dass alle Anschlüsse richtig angeklemmt sind. Dies erfolgt durch Messen der Phasen gegeneinander und gegen Null. Eine zusätzliche vierte Phase (L1') muss bei Generatoren mit DVS Wicklung überprüft werden.
- 5. Falls der Generator durch "Nullung" geschützt ist, muss sichergestellt sein, dass ALLE Komponenten durch ein gemeinsames Potential vom Gehäuse her miteinander verbunden sind.

Diese Maßnahme muss jedoch unbedingt den Erfordernissen der Landstrominstallation entsprechen. Im Regelfalle muss deswegen davon ausgegangen werden, dass nur eine Schutzmaßnahme mit RCD (FI-Schutzschalter) diesen Ansprüchen genügt. Dies sollte den nationalen Vorschriften der jeweiligen Region ensprechen, wo das System an Landstrom angeschlossen ist. Der RCD (FI-Schutzschalter) muss von seinem Auslösestrom her den Erfordernissen der Installationsumgebung entsprechen.

8.14 Inbetriebnahme

Nach erfolgter erfolgreicher Installation, ist eine Inbetriebnahme durchzuführen.

Hierfür wird das Inbetriebnahmeprotokoll vom installierenden Fachmann vollständig abgearbeitet und ausgefüllt. Das ausgefüllte Protokoll ist dem Betreiber zu übergeben.

Der Betreiber ist in die Bedienung, Wartung und Gefahren des Generators einzuweisen. Dieses betrifft sowohl die im Handbuch aufgeführten Wartungsschritte und Gefahren, sowie weiterführende, die sich aus der spezifischen Installation und den angeschlossenen Komponenten ergeben.

Das original Inbetriebnahmeprotokoll muss an Fischer Panda gesendet werden, um die vollständige Garantie zu erhalten. Fertigen Sie vorher eine Kopie für Ihre Unterlagen.

Hinweis:

9. Generator Betriebsanweisung

9.1 Personal

Der Generator darf nur vom autorisierten und eingewiesenen Personal in Betrieb gesetzt werden. Der Bediener hat vor dem Inbetriebnehmen das Handbuch vollständig zu lesen und sich mit den Gefahren und Sicherheitshinweisen vertraut zu machen. Dieses gilt sowohl für den Generator selbst sowie für entsprechende externe Geräte, Anbauteile und Nebenaggregate.

9.1.1 Sicherheitshinweise für den Betrieb

Beachten Sie die allgemeinen Sicherheitshinweise am Anfang dieses Handbuches.

Hinweis!

LEBENSGEFAHR! Unsachgemäße Bedienung kann zu schweren Personenschäden oder Sachschäden führen.

Der Generator kann mit einer Automatikstart-Vorrichtung ausgestattet sein. Dies bedeutet, dass der Generator durch ein externes Signal gestartet werden kann.

Es muss immer die Batteriebank abgeklemmt werden (zuerst Minuspol dann Pluspol), wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

Warnung! Automatikstart

Rotierende Teile! Unsachgemäße Bedienung kann zu schweren Personenschäden oder Sachschäden führen.

Der Generator darf nicht mit abgenommener Abdeckhaube in Betrieb genommen werden.

Ist bei Testläufen ein Betrieb mit abgenommener Abdeckhaube erforderlich, so ist besondere Vorsicht geboten. Diese Arbeiten niemals alleine durchführen!

Lebensgefahr. Unschgemäße Bedienung, Installation, Wartung und unsachgemäßer Betrieb können zu schweren Personenschäden oder Sachschäden führen.

Die elektrischen Spannungen von über 48 V sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

Vorsicht! Gefahr für Leib und Leben

Achtung! Lebensgefahr - Hochspannung

9.2 Allgemeine Hinweise zum Betrieb

9.2.1 Betrieb bei niedrigen Temperaturen

Der Motor kann bis zu einer Temperatur von bis zu minus 20 °C gestartet werden, solange die übrigen Betriebsbedingungen geeignet sind. Insbesondere die Betriebsflüssigkeiten wie Kühlwasser, Kraftstoff und Motoröl müssen für die entsprechende Temperatur geeignet sein. Sie sollten vor dem Start des Generators überprüft werden. Entsprechende Betriebsflüssigkeiten und/oder Zusätze sind im Fachhandel erhältlich. Kaltstarthilfen wie Sprays usw. dürfen nicht verwendet werden -> Gewährleistungsverlust!

9.2.1.1 Vorglühen des Dieselmotors

Vorkammer-Dieselmotoren sind mit einer Glühkerze ausgestattet. Die maximale Vorglühzeit darf 20 Sek. nicht überschreiten. Bei 20 °C und mehr sollte ca. 5-6 Sek. vorgeglüht werden. Unter 20 °C ist die Vorglühzeit entsprechend zu verlängern. Die fp Controlglüht automatisch vor.

Durch Vorglühen kann der Generator bei Temperaturen bis -20 °C gestartet werden.

Werden die Betriebsstoffe (Kraftstoff, Kühlmittel etc.) abgelassen und mit Betriebsstoffen für niedrige Temperaturen ersetzt, so muss der Generator für mindestens 10 Min. laufen, um sicherzustellen, dass der Generator mit den neuen Betriebsstoffen gespült ist.

9.2.1.2 Tipps zur Starterbatterie

Fischer Panda empfiehlt den Einsatz von handelsüblichen Starterbatterien. Für den Einsatz bei extremen Winterbedingungen sollte die empfohlene Starterbatteriegröße (Ah) verdoppelt werden. Es ist empfehlenswert, die Starterbatterie regelmäßig (alle 2 Monate) zu laden. Hierfür kommen entsprechende Batterieladegeräte zum Einsatz. Eine gut geladene Starterbatterie ist Vorraussetzung für den Einsatz des Generators bei niedrigen Temperaturen.

9.2.2 Betrieb mit geringer Last und Leerlauf

Wenn eine Verbrennungsmaschine mit geringerer Last wie 25-30 % ihrer nominalen Leistung betrieben wird, kann ein verstärkte Verrußung des Generators auftreten, welche Anlass zur Sorge gibt. Die Auswirkungen dieser Betriebsweise sind höherer Ölverbrauch und Ölaustritt an Ansaug- und Abgaskrümmer. Dieses tritt in bedingtem Maße auch bei Generatoren im Standby-Betrieb auf.

9.2.2.1 Gründe für die Verrußung des Generators:

Die Zylinder erreichen nicht ihre normale Betriebstemperatur und können somit nicht die optimale Verbrennung des Kraftstoffes gewährleisten. Weiterhin wird Ölkohle an den Ventilen, auf dem Kolben und im Abgassystem aufgebaut (Verrußen). Nicht verbrannter Kraftstoff löst sich im Schmieröl und verunreinigt dieses.

9.2.2.2 Um die Verrußung des Generators zu vermeiden, sollten folgende Punkte beachtet werden:

Der Betrieb mit geringer Last sollte so kurz wie möglich sein.

In einem Zeitraum von 50 Betriebsstunden sollte der Generator mindestens 4 Betriebsstunden mit Volllast laufen, um die Kohlerückstände im Verbrennungsmotor und im Abgassystem zu verbrennen. Wenn nötig ist hierfür eine Blindlast zuzuschalten. Dieses sollte langsam von 30 % auf 100 % innerhalb von 3 Stunden erhöht werden und dann bei 100 % für eine Stunde gehalten werden.

Seite/Page 74 - Kapitel/Chapter 9: 27.5.24

9.2.3 Belastung des Motors im Dauerbetrieb und Überlast

Bitte achten Sie darauf, dass der Generator nicht überlastet wird. Überlastung des Generators tritt auf, wenn die elektrische Last größer ist als der Generator liefern kann. Das wird auf Dauer dem Motor Schaden zufügen. Durch Überlast kann der Generator unruhig und rau laufen, der Schmieröl- und Kraftstoffverbrauch kann übermäßig ansteigen und die Abgaswerte sich verschlechtern.

Im Interesse einer langen Lebensdauer des Motors sollte als Dauerlast 80% der Nennlast kalkuliert werden. Unter Dauerleistung verstehen wir den ununterbrochenen Dauerbetrieb des Generators über viele Stunden. Es ist für den Motor unbedenklich, über 2-3 Stunden die volle Nennleistung zu liefern.

Die Gesamtkonzeption des Fischer Panda Generators stellt sicher, dass der Volllastbetrieb auch bei extremen Bedingungen keine überhöhten Temperaturen des Motors auslöst. Es ist aber zu bedenken, dass die Abgaswerte im Volllastbetrieb ungünstiger werden (Rußbildung).

9.2.4 Schutzleiter

Serienmäßig ist der Generator "genullt" (Mittelpunkt und Masse sind im Generatorklemmkasten durch eine Brücke miteinander verbunden). Dies ist eine erste Grundsicherung, die - solange keine anderen Maßnahmen installiert sind - einen Schutz bietet. Sie ist vor allem für die Auslieferung und einen eventuell erforderlichen Probelauf gedacht.

Diese "Nullung" (PEN) ist nur wirksam, wenn alle Teile des elektrischen Systems auf einem gemeinsamen Potenzial "geerdet" sind. Die Brücke kann entfernt werden, wenn das aus installationstechnischen Gründen erforderlich ist und stattdessen ein anderes Schutzsystem eingerichtet worden ist.

Beim Betrieb des Generators liegt auch in der AC-Kontrollbox die volle Spannung 120/230 V bzw. 230/400 V an. Es muss deshalb unbedingt sichergestellt sein, dass die Kontrollbox geschlossen und sicher vor Berührung ist, wenn der Generator läuft.

Es muss immer die Batterie abgeklemmt werden, wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

9.2.5 Betriebsüberwachungssystem am Fischer Panda Generator

Fischer Panda Generatoren sind mit mehreren Sensoren/Temperaturschaltern zur Betriebsüberwachung ausgerüstet. Der Verbrennungsmotor hat zusätzlich einen Öldruckschalter, welcher abschaltet, sobald der Öldruck unter ein bestimmten Wert sinkt.

9.3 Kontrollen vor dem Start - siehe Fernbedienpanel Datenblatt

Die Hinweise und Vorschriften im Fernbedienpanel Datenblatt sind zu beachten.

Hinweis!

Beachten Sie die allgemeinen Sicherheitshinweise am Anfang dieses Handbuches.

9.4 Start des Generators - siehe Fernbedienpanel Datenblatt

Die Hinweise und Vorschriften im Fernbedienpanel Datenblatt sind zu beachten.

Hinweis!

Beachten Sie die allgemeinen Sicherheitshinweise am Anfang dieses Handbuches.

9.5 Abschalten des Generators - siehe Fernbedienpanel Datenblatt

Die Hinweise und Vorschriften im Fernbedienpanel Datenblatt sind zu beachten.

Beachten Sie die allgemeinen Sicherheitshinweise am Anfang dieses Handbuches.

Hinweis!

10. Wartungshinweise

10.1 Personal

Die hier beschriebenen Wartungsarbeiten können - soweit nicht anders gekennzeichnet - durch den Bediener ausgeführt werden.

Weitere Wartungsarbeiten dürfen nur von speziell ausgebildetem Fachpersonal oder durch Vertragswerkstätten (Fischer Panda Service Points) ausgeführt werden. Dies gilt insbesondere für Arbeiten an der Ventileinstellung, Diesel-Einspritzanlage und für die Motorinstandsetzung.

Die hier beschriebenen Arbeiten können als Leitfaden genommen werden. Da Fischer Panda die genauen Einbau- und Lagerungskonditionen nicht bekannt sind, sind die Arbeitsanweisungen und Materialien von einem Fachmann vor Ort anzupassen. Schäden durch unsachgemäße Wartung/Instandsetzung sind nicht durch die Garantie abgedeckt.

Achtung!

10.1.1 Gefahrenhinweise für die Wartung

Beachten Sie die allgemeinen Sicherheitshinweise am Anfang dieses Handbuches.

Hinweis!

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Es muss immer die Batteriebank abgeklemmt werden (zuerst Minuspol dann Pluspol), wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

Warnung! Automatikstart

Unsachgemäße Wartung kann zu schweren Personenoder Sachschäden führen. Deshalb:

- Wartungsarbeiten nur bei abgestelltem Motor vornehmen.
- Vor Beginn der Arbeiten für ausreichende Montagefreiheit sorgen.
- auf Ordnung und Sauberkeit am Arbeitsplatz achten! Lose aufeinander- oder umherliegende Bauteile und Werkzeuge sind Unfallguellen.
- Wartungsarbeiten nur mit handelsüblichen Werkzeug und Spezialwerkzeug durchführen. Falsches oder beschädigtes Werkzeug kann zu Verletzungen führen.

Achtung! Verletzungsgefahr

Öl und Kraftstoffdämpfe können sich bei Kontakt mit Zündquellen entzünden. Deshalb

- Kein offenes Feuer bei Arbeiten am Motor.
- · nicht rauchen.
- Öl und Kraftstoffrückstände vom Motor und vom Boden

Warnung! Feuergefahr

entfernen.

Kontakt mit Motoröl, Kraftstoff und Frostschutzmittel kann zur Gesundheitsschädigung führen. Deshalb:

- Hautkontakt mit Motoröl, Kraftstoff und Frostschutzmittel vermeiden.
- Öl und Kraftstoffspritzer umgehend von der Haut entfernen.
- Öl und Kraftstoffdämpfe nicht einatmen.

Elektrische Spannung LEBENSGEFAHR! -Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Die elektrischen Spannungen von über 48 V sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

Generator und Kühlwasser können bei und nach dem Betrieb heiß sein.

Durch den Betrieb kann sich im Kühlsystem ein Überdruck bilden.

Bei Wartungsarbeiten ist persönliche Schutzausrüstung zu tragen. Hierzu gehört:

- · Eng anliegende Schutzkleidung
- · Sicherheitsschuhe
- Sicherheitshandschuhe
- · ggf. Schutzbrille

Um Schäden an den Geräten zu vermeiden, sind bei Arbeiten am Generator immer alle Verbraucher abzuschalten.

Batterien enthalten ätzende Säure und Laugen.

Durch unsachgemäße Behandlung können sich Batterien erwärmen und bersten. Ätzende Säure /Lauge auslaufen. Unter ungünstigen Bedingungen kann es zu einer Explosion kommen.

Beachten Sie die Hinweise Ihres Batterieherstellers.

Vorsicht! Vergiftungsgefahr

Warnung! Elektrische Spannung

Achtung! Verletzungsgefahr!

Achtung! Schutzausrüstung erforderlich

Achtung! Alle Verbraucher abschalten

Warnung!

10.1.2 Entsorgung der Motorflüssigkeiten

Motorflüssigkeiten sind schädlich für die Umwelt.

Abgelassene Motorflüssigkeiten sammeln und fachgerecht entsorgen!

Der Umwelt zu liebe.

10.2 Allgemeine Wartungsanweisungen

Kontrolle vor jedem Start (oder einmal täglich)

- Ölstand
- · Undichtigkeiten im Kühlsystem
- Sichtkontrolle auf Veränderungen, Undichtigkeiten, Ölwechselschlauch, Keilriemen, Kabelanschlüsse, Schlauchschellen, Luftfilter

Einmal monatlich

• Fetten/Ölen der Stellmotor-Trapezgewinde-Spindel (wenn vorhanden).

10.3 Wartungsintervalle

Die Wartungsintervalle entnehmen Sie den "Allgemeinen Informationen für PMS Generatoren", die diesem Handbuch beiliegen.

Bei Generatoren mit variablen Serviceintervall (z. B. Generatoren mit iControl2 Steuerung) finden Sie weitere Informationen im Handbuch/Datenblatt des Fernbedienpanels.

Durch die variable Betriebsstundenanzeige können die Serviceintervalle um bis zu 30 % (auf max. 200 h) verlängert werden. Es ist sicherzustellen, dass die variable Betriebsstundenanzeige zwischen den Intervallen nicht unabsichtlich zurückgesetzt wird.

10.4 Kontrolle Schlauchelemente und Gummiformteile in der Schalldämmkapsel

Alle Schläuche und Schlauchverbindungen auf guten Zustand hin überprüfen. Die Gummischläuche sind sehr empfindlich gegen Umgebungseinflüsse. Sie können bei trockener Luft, in der Umgebung von leichten Öl- und Kraftstoffdämpfen und erhöhter Temperatur schnell altern. Die Schläuche müssen regelmäßig auf Elastizität geprüft werden. Es gibt Betriebssituationen, bei denen die Schläuche einmal im Jahr erneuert werden müssen.

10.5 Wartung des Seewasserkreislaufs

Nicht bei allen Modellen vorhanden

10.5.1 Seewasserfilter reinigen

Der Seewasserfilter sollte regelmäßig von Rückständen befreit werden. Dazu muss in jedem Fall vorher das Seeventil geschlossen werden. Meistens reicht es aus, das Filterkörbchen auszuklopfen.

Sollte durch den Deckel des Seewasserfilters Wasser sickern, darf dieser auf keinen Fall mit Kleber oder Dichtungsmasse abgedichtet werden. Vielmehr muss nach der Ursache für die Leckage gesucht werden. Im einfachsten Fall muss lediglich der Dichtring zwischen Verschlussdeckel und Filterhalter ausgetauscht werden.

Beispielbild

10.5.2 Seewasserpumpe und Impeller

10.5.2.1 Ursachen bei häufigem Impellerverschleiß

1. Unsachgemäße Betriebsbedingungen

Der Impeller der Kühlwasserpumpe muss als Verschleißteil angesehen werden. Die Lebensdauer des Impellers kann extrem unterschiedlich sein und hängt ausschließlich von den Betriebsbedingungen ab. Die Kühlwasserpumpen der Fischer Panda Generatoren sind so ausgelegt, dass die Drehzahl der Pumpe im Vergleich zu anderen Aggregaten relativ niedrig liegt. Dies ist für die Lebensdauer der Pumpe ein positiver Effekt.

2. Lange Ansaugstrecke des Kühlwassers

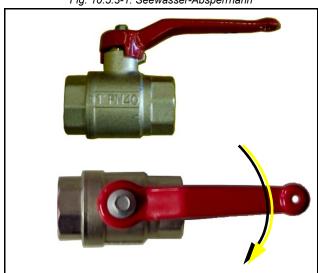
Sehr ungünstig wirkt sich auf die Lebensdauer des Impellers aber aus, wenn der Kühlwasseransaugweg relativ lang ist oder der Zufluss behindert ist, so dass im Kühlwasseransaugbereich ein Unterdruck entsteht. Dies kann erstens die Leistung der Kühlwasserpumpe extrem mindern und dazu führen, dass die Flügel des Impellers sehr starken Belastungen ausgesetzt sind. Dies kann die Lebensdauer extrem verkürzen.

3. Betrieb in verschmutztem Wasser

Weiterhin ist der Betrieb der Impellerpumpe in Gewässern mit einem hohen Anteil an Schwebstoffen sehr belastend. Besonders kritisch ist der Gebrauch der Impellerpumpe auch in Korallengewässern. Uns sind Fälle bekannt, in denen eine Impellerpumpe nach 100 Stunden bereits so stark eingelaufen war, dass die Lippendichtung auf der Welle eingeschliffen war. In diesen Fällen setzen sich scharfe Kristallteile des Korallensands in der Gummidichtung fest und wirken wie ein Schleifmittel auf den Edelstahlschaft der Impellerpumpe.

4. Generator ist über der Wasserlinie montiert

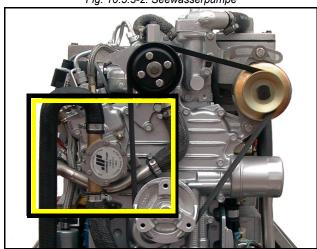
Weiterhin ist für die Impellerpumpe besonders nachteilig, wenn der Generator über dem Wasserspiegel angeordnet wurde. Dadurch werden zwangsläufig nach dem ersten Start einige Sekunden vergehen, bis der Impeller Kühlwasser ansaugen kann. Diese kurze Trockenlaufzeit beschädigt den Impeller. Der erhöhte Verschleiß kann ebenfalls nach kurzer Zeit zum Ausfall führen (siehe besondere Hinweise: "Einwirkungen auf die Impellerpumpe, wenn der Generator über der Wasserlinie angeordnet ist").



10.5.3 Austausch des Impellers

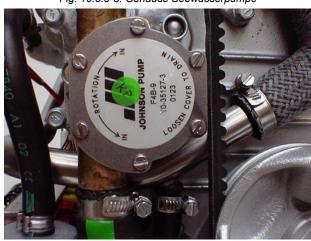
Schließen Sie den Seewasser-Absperrhahn

Beispielbild


Fig. 10.5.3-1: Seewasser-Absperrhahn

Seewasserpumpe auf der Vorderseite des Aggregats

Beispielbild



Entfernen Sie den Deckel der Seewasserpumpe, indem Sie die Schrauben auf dem Gehäuse lösen.

Beispielbild - siehe Kapitel A.2

Fig. 10.5.3-3: Gehäuse Seewasserpumpe

Ziehen Sie den Impeller mit einer Wasserpumpenzange von der Welle.

Markieren Sie den Impeller, um sicherzustellen, dass dieser bei einem evtl. Wiedereinbau in der richtigen Position eingesetzt wird

Beispielbild

Kontrollieren Sie den Impeller auf Schäden und ersetzen Sie diesen, falls notwendig.

Vor dem Wiedereinsetzen in das Gehäuse sollte der Impeller mit Glyzerin oder einem nicht-mineralölbasierendem Gleitmittel geschmiert werden, z.B. Silikonspray.

Beispielbild

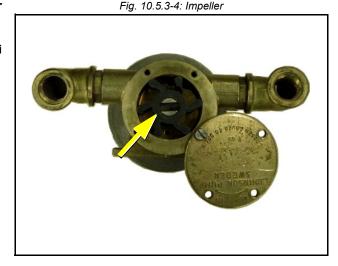


Fig. 10.5.3-5: Impeller

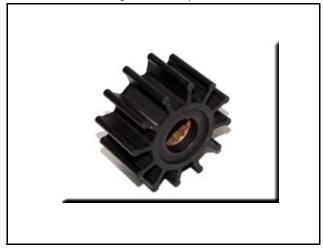


Fig. 10.5.3-6: Deckel Pumpemwelle

Der Impeller wird an der Pumpenwelle angebracht (wenn der alte Impeller weiter eingesetzt wird, muss man auf die vorher angebrachte Markierung achten).

Befestigen Sie den Deckel und benutzen Sie eine neue Dichtung.

Beispielbild

10.6 Impellerfilter

Fig. 10.6-1: Impellerfilter

10.6.1 Betriebsweise

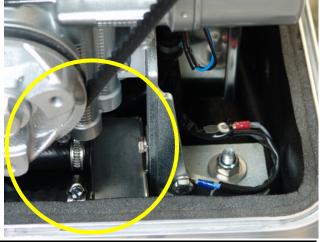
Im Falle eines Impellerbruchs können Gummistücke des Impellers durch das Seewasser-Kühlsystem gedrückt werden. Diese Stücke setzen sich an Engstellen (z. B. Wärmetauscher) ab und reduzieren den Durchfluss und damit die Kühlwirkung. Ein aufwendiges Demontieren und Reinigen des gesamten Kühlsystems ist die Folge.

Durch das Fischer Panda Impellersieb werden diese Gummistücke kontrolliert aufgefangen und können so leicht aus dem Kühlkreislauf entfernt werden. Die Durchfluss-Oberfläche innerhalb des Siebs wurde um ein Vielfaches erhöht, so dass in Notfallsituationen (schwere See etc.) nur der Impeller getauscht werden muss. Die Reinigung/der Tausch des Impellersiebs kann an einem zeitlich optimalen Punkt geschehen. Eine Notabschaltung des Generators durch einen verstopften Kühlkreislauf und die dadurch entstehende Überhitzung mit evtl. Folgeschäden wird nahezu gebannt.

Das Impellersieb ist nach jedem Impellerschaden zu reinigen. Sollten Sie sich nicht sicher sein, dass beim Reinigen des Impellersiebs alle Impellerteile entfernt wurden, empfehlen wir, das Sieb auszutauschen.

10.6.2 Reinigung und Tausch des Impellersiebs

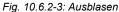
Vor Beginn der Arbeiten schließen Sie das Seewasserventil und sichern den Generator vor unbeabsichtigtem Start (z. B. Starterbatterie abklemmen).


Impellersieb

Das Impellersieb ist an der Frontseite des Generators an dem rechten Motorenfuß angeschraubt.

Achtung!

Fig. 10.6.2-1: Lokalisierung


Reinigen des Impellersiebes durch Rückspülen

Die effektivste Reinigung ist das Spülen mit Wasser in umgekehrter Durchflussrichtung.

Fig. 10.6.2-2: Rückspülen

Optional: Reinigen des Impellersiebs mit Druckluft

10.6.3 Erstes Befüllen und Entlüften des internen Kühlwasserkreises

Der Ausgleichsbehälter ist mit einem Überdruckventil 500 mbar im Deckel ausgerüstet. Beim Generatorbetrieb kann bei Überdruck heiße Kühlflüssigkeit hier austreten. Tragen Sie beim Arbeiten Sicherheitskleidung und sorgen Sie für einen geeigneten Einbauort.

 Auffüllen des externen Kühlwasser-Ausgleichsbehälters mit Kühlwasser.

Achtung: "Maximaler Füllstand = Markierung "max."

Der Deckel auf dem externen Kühlwassergefäß muss vorläufig geöffnet bleiben (alle anderen Verschlüsse sind aber jetzt geschlossen!).

Beispielbild

Achtung!: Verbrennungsgefahr.

Fig. 10.6.3-1: Kühlwasserausgleichsbehälter

2. Entlüftungsschraube am Thermostatgehäuse öffnen, bis Kühlflüssigkeit blasenfrei austritt. Entlüftungsschraube schließen.

Während des Entlüftens den Kühlflüssigkeitsstand im Ausgleichsgefäß kontrollieren und ggf. nachfüllen.

Beispielbild

3. Start des Generators

Nach dem Befüllen des Generators muss dieser gestartet werden. Während dieser ersten Phase der Inbetriebnahme darf der Generator nicht belastet werden.

Nach ca. 10 Sek. Betriebszeit den Generator wieder abschalten!

4. Wiederholen Sie die Schritte 1-4 so lange, bis keine Luft mehr aus der Entlüftungsschraube am Thermostatgehäuse entweicht.

Schließen Sie danach die Entlüftungsschraube.

Füllen Sie das Ausgleichsgefäß bis zur max. Markierung auf.

Schließen Sie das Ausgleichsgefäß.

5. Erneuter Entlüftungsvorgang 10 Betriebsstunden nach der ersten Inbetriebnahme (und wenn erforderlich).

Auch nach der ersten Inbetriebnahme kann sich immer noch in geringen Mengen Luft im Kühlkreislauf befinden. Um einen einwandfreien und effektiven Betrieb des Kühlsystems zu gewährleisten, muss deshalb in den nächsten Tagen (und gegebenenfalls Wochen) gelegentlich der Entlüftungsvorgang wiederholt werden. Es werden immer noch - insbesondere, wenn der Generator längere Zeit gestanden hat - geringe Mengen von Luft aus den Entlüftungsöffnungen austreten.

Während des Entlüftungsvorganges muss immer wieder ACHTUNG: Zirkulation prüfen überprüft werden, ob das Kühlwasser auch tatsächlich zirkuliert. Wenn sich Luftblasen in der internen Kühlwasserpumpe festgesetzt haben, kann es sein, dass der Kühlwasserkreis nicht zirkuliert. Der Generator würde dann sehr schnell überhitzen und abschalten.

10.6.3.1 Frostschutz im Kühlkreislauf

Im Interesse der Sicherheit muss die Konzentration der Frostschutzlösung regelmäßig kontrolliert werden. Werkseitig ist die Frostschutzlösung auf - 15 ° C vorgesehen. Wenn beim Transport und bei der Lagerung niedrigere Temperaturen in Betracht kommen, muss die Kühlwasserfüllung unbedingt abgelassen werden. Die Kühlflüssigkeit dient auch dem Korrosionsschutz des Motors.

10.6.4 Temperaturprüfung zur Kontrolle des Kühlkreises

Für die Zirkulationskontrolle kann mit einem IR-Thermometer geprüft werden, ob zwischen Kühlwasservorlauf und Kühlwasserrücklauf ein Temperaturunterschied besteht.

Die Kühlwasservorlaufleitung kann direkt vor der internen Kühlwasserpumpe gemessen werden.

Die Kühlwasserrücklaufleitung kann man entweder am Austritt des wassergekühlten Abgaskrümmers oder an der

Seite, wo diese Leitung am Wärmetauscher eintritt, gemessen werden.

Die Temperaturdifferenz zwischen Vorlauf und Rücklauf soll bei Nennbetrieb ca. 8 ° C betragen.

10.7 Austausch des Luftfilters

- 1. Öffnen des Verschlusses an der rechten Seite des Luftansauggehäuses.
 - 01. Verschluss

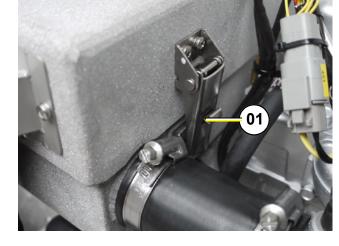


Fig. 10.7-1: Austausch Luftfilter

Fig. 10.7-2: Austausch Luftfilter

- 2. Öffnen des Verschlusses an der linken Seite des Luftansauggehäuses.
 - 01. Verschluss

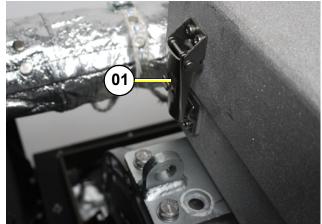
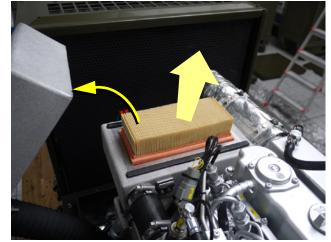
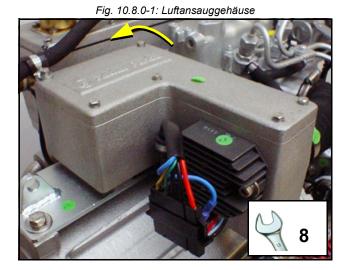



Fig. 10.7-3: Austausch Luftfilter

3. Gehäusedeckel anheben und nach hinten ziehen.

4. Wechseln des Luftfilters (MANN FILTER C2039).

5. Wiedereinbau in umgekehrter Reihenfolge.



10.8 Austausch der Luftfiltermatte "Marine"

Öffnen des Luftansauggehäuses durch Lösen der Schrauben auf dem Gehäusedeckel.

Beispielbild

Wechseln der Luftfiltermatte

Schließen Sie das Luftansauggehäuse anschließend wieder.

Beispielbild

10.8.1 Alternativer Austausch des Luftfilters durch Schnellwechselhalter

Luftfiltergehäuse mit Schnellwechselhalter

Beispielbild

Kippen Sie die 2 Halter um 90°

Beispielbild

Ziehen Sie den Filtermattenhalter heraus

Beispielbild

Wiedereinbau durch umgekehrte Reihenfolge der Schritte 1-4

Beispielbild

Fig. 10.8.1-2: Luftfiltergehäuse mit Schnellwechselhalter

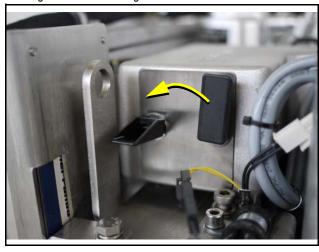


Fig. 10.8.1-3: Luftfiltergehäuse mit Schnellwechselhalter

Fig. 10.8.1-4: Luftfiltergehäuse mit Schnellwechselhalter

10.9 Austausch des Luftfilters

Abbildungen ähnlich

Ist das hintere Element des Luftfiltergehäuses gut zugänglich, kann bei Nr 3 begonnen werden.

 Den Spannring mit Hilfe eines Schraubendrehers lösen. Den Schraubendreher zwischen Spannring und Halteklinke ansetzen und den Spannring nach oben aushebeln.

- 01. Spannring
- 02. Luftfiltergehäuse
- 03. Schraubendreher
- 2. Das Luftfiltergehäuse herausnehmen.
- 01. Luftfiltergehäuse

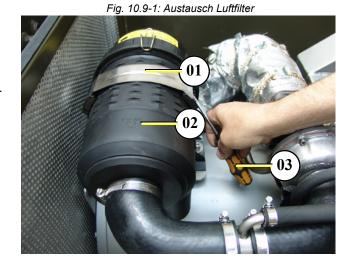
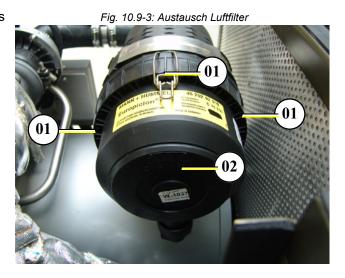
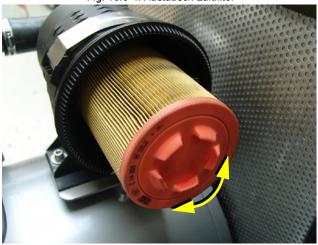



Fig. 10.9-2: Austausch Luftfilter


- 3. Die drei Halteklammern des Filtergehäuses lösen und das hintere Element entnehmen.
- 01. Halteklammer
- 02. Hinteres Element

4. Entfernen Sie das Filterelement mit einer leichten Drehbewegung vollständig vom inneren Stützrohr.

Fig. 10.9-4: Austausch Luftfilter

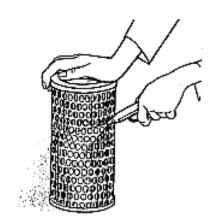
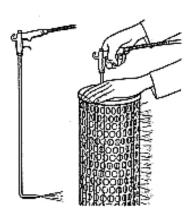

- 5. Säubern Sie das Filterelement, indem Sie es mit trockener komprimierter Luft ausblasen (max. 5 bar) oder ersetzen Sie das Filterelement spätestens nach 2 Jahren.
- 6. Wiedereinbau in umgekehrter Reihenfolge.

Fig. 10.9-5: Austausch Luftfilter

7. Filterpatrone in Faltrichtung ausblasen. Maximaler Druck: 5 bar.


Fig. 10.9-6: Luftfilter reinigen

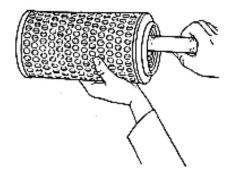

8. Filterpatrone von innen ausblasen.

Fig. 10.9-7: Luftfilter reinigen

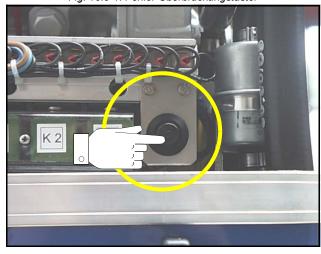
9. Filterpatrone mit Stablampe auf Beschädigung prüfen.

Fig. 10.9-8: Luftfilter reinigen

10.9.1 Entlüften des Kraftstoffsystems

Grundsätzlich ist das Kraftstoffsystem selbstentlüftend, d.h. es muss nur der elektrische Starter bedient werden, und durch die Förderung der Kraftstoffpumpe wird sich nach einiger Zeit das Kraftstoffsystem automatisch entlüften. Es ist aber dennoch notwendig, bei der ersten Inbetriebnahme, wenn die Leitungen leer sind, das folgende Verfahren durchzuführen:

Generatoren mit iControl, xControl oder fpControl Steuersystem benötigen keinen Fehlerüberbrückungsschalter. Bei diesen Generatoren kann die Kraftstoffpumpe über eine Funktion des Steuersystems angeschaltet werden. Siehe Handbuch Steuerungssystem. Achtung!


1. Hauptschalter auf "ON" stellen. Funktionselemente müssen leuchten.

 Fehler-Überbrückungstaster drücken und festhalten. Die elektrische Kraftstoffpumpe muss hörbar laufen. Durch das Bewegen des Fehler-Überbrückungstasters wird das Ein- und Ausschalten des Kraftstoff-Magnetventils am Generator hörbar (bei abgenommenem Kapseloberteil).

Beispielbild

Fig. 10.9-1: Fehler-Überbrückungstaster

3. Wenn die Kraftstoffpumpe durch das Niederdrücken des Fehler-Überbrückungstasters für ca. 3 - 4 Minuten gelaufen ist, wird die Entlüftungsschraube am Kraftstoff-Magnetventil gelöst (siehe Bild). Während des Öffnens der Schraube muss der Knopf weiter gedrückt werden. Um zu verhindern, dass austretender Kraftstoff in die Kapsel läuft, sollte man ein großes Stück Tuch oder saugfähiges Papier zum Auffangen unter den Anschluss legen. Wenn der Kraftstoff einwandfrei blasenfrei austritt, kann die Entlüftungsschraube geschlossen werden. Erst dann darf der Taster losgelassen werden.

Beispielbild

- Jetzt kann die Maschine durch Betätigen der Anlassertaste gestartet werden. Die Maschine sollte jetzt nach kurzer Zeit starten.
- 5. Falls das nicht gelingt, muss eine der Überwurfmuttern an der Einspritzdüse gelöst und der Startversuch wiederholt werden. Nach erfolgtem Start die Überwurfmutter wieder festziehen!

6. Hauptschalter "OFF".

Beispielbild

Fig. 10.9-3: Einspritzdüsen

10.9.2 Austausch des Kraftstofffilters

Der Austausch des Filters ist von der Verschmutzung des Kraftstoffes abhängig, sollte jedoch trotzdem mindestens einmal im Jahr erfolgen.

Vor dem Austausch des Filters muss die Zuleitung abgeklemmt werden.

Entfernen Sie die Schläuche von dem gebrauchten Filter und befestigen Sie diese an dem neuen Filter. Der Pfeil auf dem Filtergehäuse zeigt die Richtung des Kraftstoffflusses an. Ein verstopfter Filter verursacht eine verminderte Ausgangsleistung des Generators.

Beispielbild

Fig. 10.9.2-1: Kraftstofffilter

10.10Motoröl prüfen und auffüllen

10.10.1 Ölstand prüfen

Sie benötigen:

Papiertücher / Putzlappen für den Ölpeilstab

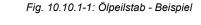
Der Generator muss eben stehen.

- bei Fahrzeuggeneratoren: Stellen Sie das Trägerfahrzeug auf eine ebene Fläche.
- bei PSC Generatoren: Stellen Sie den Generator auf eine ebene Fläche.
- bei Marine Generatoren: Messen Sie den Ölstand, /fährt.

Betreiben Sie den Generator für ca. 10 Minuten, um sicherzustellen, dass der Motor warm ist. Warten Sie 3 Minuten, damit das Öl in die Ölwanne zurückfließen kann.

Generator und Kühlwasser können bei Betrieb und nach Achtung: Verbrennungsgefahr; dem Betrieb heiß sein.

Persönliche Schutzausrüstung tragen (Handschuhe; Schutzbrille; Sicherheitskleidung und Sicherheitsschuhe)


- · Sichern Sie den Generator vor unbeabsichtigtem Start.
- · Öffnen Sie die Generatorkapsel.
- · Ziehen Sie den Ölpeilstab aus der Führung.
- · Wischen Sie den Ölpeilstab sauber.
- Stecken Sie den Ölpeilstab in die Führung zurück und warten Sie 10 Sekunden.
- Ziehen Sie den Ölpeilstab aus der Führung und lesen Sie am unteren Ende den Ölstand ab.

Ölpeilstab

Mithilfe des Ölpeilstabes ist der Ölstand zu überprüfen. Die vorgeschriebene Füllhöhe darf die "Max"-Markierung nicht überschreiten.

Wir empfehlen 3-4 mm unter Max Ölstand.

Beispielbild

3-4 mm unter Max

Ölpeilstab EA 300 Motor

Mithilfe des Ölpeilstabs ist der Ölstand zu überprüfen. Die vorgeschriebene Füllhöhe darf die "Max"-Markierung nicht überschreiten.

Wir empfehlen 2/3 Ölstand.

Beispielbild

Fig. 10.10.1-2: Beispielbild Ölpeilstab

Liegt der Ölstand unter 1/3 zwischen der Minimummarkierung und der Maximummarkierung, sollte Öl nachgefüllt werden.

Fischer Panda empfiehlt einen Ölstand von 2/3 zwischen der Minimummarkierung und der Maximummarkierung.

Liegt der Ölstand unter der MIN-Markierung, prüfen Sie anhand Ihres Servicehandbuchs oder eines vorhandenen Ölwechselanhängers, wie viele Betriebsstunden seit dem letzten Ölwechsel vergangen sind.

10.10.2 Öl auffüllen

Sie benötigen:

Motorenöl

- 1. Prüfen Sie den Ölstand wie unter "Ölstand prüfen" auf Seite 95 beschrieben.
- 2. Ölpeilstab ist aus der Führung gezogen.
- 3. Öffnen Sie den Öleinfülldeckel.
- 4. Füllen Sie das Öl (ca. 1/2 Liter) ein und warten ca. 2 Min, damit dieses bis in die Ölwanne laufen kann.
- 5. Wischen Sie den Ölpeilstab sauber und stecken Sie ihn in die Führung.
- 6. Ziehen Sie den Ölpeilstab aus der Führung und kontrollieren Sie den Ölstand. Siehe "Ölstand prüfen" auf Seite 95.

Ist der Ölstand noch zu niedrig: Wiederholen Sie die Schritte 4-6.

10.10.3 Nach der Ölstandskontrolle und dem Ölauffüllen

- · Stecken Sie den Ölpeilstab zurück in die Führung.
- · Schließen Sie den Öleinfülldeckel.
- Entfernen Sie eventuell Ölflecken und Spritzer vom Generator und Umgebung.
- · Schließen Sie die Generatorkapsel.
- Entfernen Sie die Sicherung gegen unbeabsichtigten Start des Generators.

10.11Wechseln des Motorenöls und des Motorölfilters

Sie benötigen:

- Motorenöl. Siehe Anhang
- Neuen Ölfilter (nicht bei Generatoren mit EA300 Motoren)
- Dichtung für die Ölablassschraube
- Persönliche Schutzausrüstung
- Gefäß zum Auffangen des Altöls (hitzebeständig und in ausreichender Größe
- Gabelschlüssel für die Ölablassschraube.
- Papiertücher und Putzlappen
- Ölfilterschlüssel
- Ölfeste Unterlage, damit Altöl nicht in das Grundwasser gelangen kann.

Der Generator muss waagerecht stehen.

- bei Fahrzeuggeneratoren: Stellen Sie das Trägerfahrzeug auf eine ebene Fläche.
- bei PSC Generatoren: Stellen Sie den Generator auf eine ebene Fläche.
- bei Marine Generatoren: Wechseln Sie das Öl, wenn das Schiff keine Krängung hat oder fährt.

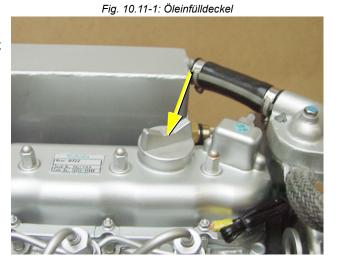
Betreiben Sie den Generator für ca. 10 Minuten um sicherzustellen, dass der Motor warm ist. Warten Sie 3 Minuten, damit das Öl in die Ölwanne zurückfließen kann.

Generator und Kühlwasser können bei und nach dem Betrieb heiß sein.

Persönliche Schutzausrüstung tragen (Handschuhe; Schutzbrille; Sicherheitskleidung und Sicherheitsschuhe)

- Generator vorbereiten.
 - Sichern Sie den Generator vor unbeabsichtigtem Start.
 - Öffnen Sie die Generatorkapsel.
 - Bei Generatoren mit außen liegendem Ölablassschlauch: Lösen Sie den Ölablassschlauch aus der Halterung.
 - Bei Generatoren mit innen liegendem Ölablassschlauch: Öffnen Sie die Durchführung für den Ölablassschlauch (Linksdrehen des Verschlusses). Ziehen Sie den Verschluss mit dem Ölablassschlauch heraus.

Legen Sie die ölfeste Unterlage unter den Bereich des Ölablassschlauches und stellen Sie das Auffanggefäß bereit.


Achtung: Verbrennungsgefahr!

2. Öleinfülldeckel lösen

Schrauben Sie den Öleinfülldeckel ab. Dies ist notwendig, da sich sonst ein Vakuum bildet und das Öl nicht vollständig ablaufen kann.

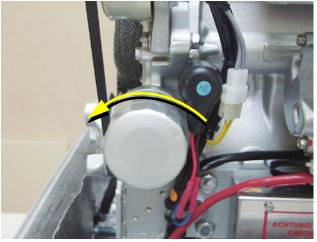
Beispielbild

3. Ölablassschraube öffnen.

Schrauben Sie die Ölablassschraube mithilfe der Maulschlüssel vom Ölablassschlauch (Drehrichtung links)Zum Kontern verwenden Sie einen zweiten Maulschlüssel. Achten Sie darauf, dass dieses über dem Auffanggefäß geschieht.

Fig. 10.11-2: Ölablassschlauch

4. Altöl ablassen.


Lassen Sie das gesamte Öl aus dem Motor ablaufen. Dies kann einige Minuten dauern.

5. Alten Ölfilter entfernen / Ölsieb reinigen

Lösen Sie den Ölfilter, indem Sie den Filterschlüssel gegen den Uhrzeigersinn drehen. Der Filter kann voller Öl sein. Achten Sie also darauf, nichts zu verschütten und vermeiden Sie Hautkontakt.

Fig. 10.11-3: Ölfilter

Beispielbild

Ölsieb bei Generatoren mit EA300 Motoren

Das Ölsieb sollte alle 500 Betriebsstunden gereinigt werden: Folgen Sie hierfür den Anweisungen im Motorenhandbuch.

Beispielbild

6. Neuen Filter vorbereiten.

Reinigen Sie den Filterhalter des Motors und streichen Sie eine dünne Ölschicht auf die Dichtung des neuen Filters.

Fig. 10.11-4: Ölsieb

Fig. 10.11-5: Ölfilter Dichtungsring

7. Neuen Filter einbauen.

Schrauben Sie den neuen Filter per Hand vorsichtig ein. Er darf nicht zu fest angezogen werden. Schrauben Sie die Ölablassschraube wieder ein und ziehen Sie sie mit dem Schlüssel fest. Verwenden Sie eine neue Dichtung für die Ölablassschraube.

8. Öl einfüllen (Ölfüllmenge: siehe Anhang)

Füllen Sie mithilfe eines Trichters Motorenöl in den Motor ein. Überprüfen Sie nach jeweils zwei Litern den Ölstand mit dem Ölpeilstab.

9. Korrekten Füllstand überprüfen. Siehe "Ölstand prüfen" auf Seite 95.

Wenn der korrekte Füllstand erreicht ist, schrauben Sie den Öldeckel wieder fest. Lassen Sie den Motor 10 Minuten lang laufen und schalten Sie ihn dann aus. Überprüfen Sie den Ölstand noch einmal nach ein paar Minuten mit dem Ölpeilstab. Ist er zu niedrig, füllen Sie nochmal Öl nach.

10. Aufräumen

Wischen Sie alle Ölspritzer vom Generator ab und gehen Sie sicher, dass an der Ablassschraube kein Leck ist.

10.11.1 Nach dem Ölwechsel

- Stecken Sie den Ölpeilstab zurück in die Führung.
- · Schließen Sie den Öleinfülldeckel.
- Entfernen Sie eventuell Ölflecken und Spritzer vom Generator und Umgebung.
- · Schließen Sie die Generatorkapsel.
- Entfernen Sie die Sicherung gegen unbeabsichtigten Start des Generators
- Altöl und Filter ordnungsgemäß entsorgen.

Altöl ist sehr giftig und darf nicht über den Hausmüll entsorgt werden. Es ist verboten, Altöl über die Abwasseranlage zu entsorgen! Achten Sie auf eine korrekte Entsorgung des Altöls (z. B. dort, wo das Öl gekauft wurde, oder Recyclinghof in Ihrer Nähe).

10.12Überprüfen der Starterbatterie und ggf. der Batteriebank

Überprüfen Sie den Zustand der Batterie. Gehen Sie hierbei wie vom Batteriehersteller vorgeschrieben vor. Falls vom Batteriehersteller nicht anders angegeben:

10.12.1 Batterie

10.12.1.1 Überprüfen der Batterie und der Batterieanschlusskabel

- · Batterie sauber und trocken halten.
- · Lösen der dreckigen Batterieklemmen.
- (+ und -) und der Batterieklemmen. Fetten der Pole mit einem säurefreien und säureresistenten Fett.
- Beim Wiederanklemmen darauf achten, dass die Batterieklemmen guten Kontakt haben. Batterieklemmen "handfest" anziehen.

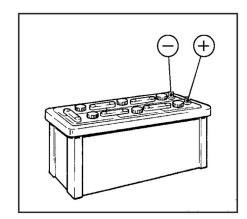


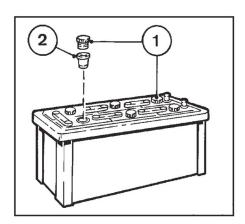
Fig. 10.12.1.1-1: Batterie

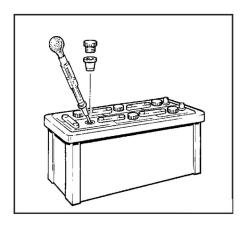
10.12.1.2 Überprüfen des Elektrolytstandes

- Entfernen der Dichtstopfen 1.
- · Falls Säureleveltester 2 verbaut sind:
- Elektrolytstand soll den Boden des Testers berühren.
- Ohne Tester:

Der Elektrolytlevel sollte über den Batterie-platten sein.

- · Mit destilliertem Wasser auffüllen, falls nötig.
- Dichtstopfen wieder einsetzen.




Fig. 10.12.1.2-1: Batterie

10.12.1.3 Elektrolytdichte kontrollieren

 Messen der Elektrolytdichte jeder Zelle mit einem handelsüblichen Hygrometer. Die angezeigte Dichte zeigt den Ladezustand der Batterie an. Bei der Messung soll die Elektrolyttemperatur ca. 20 °C betragen.

Fig. 10.12.1.3-1: Batterie

Elektrolytdichte		
In [kg/ I]		Ladezustand
Normal	In den Tropen	
1.28	1.23	Geladen
1.20	1.12	Halb geladen - nachladen ggf. erforderlich
1.12	1.08	Entladen, sofort nachladen.

Austretende Batteriegase sind hochentzündlich/ hochexplosiv. Zündquellen fernhalten (offenes Feuer, Funken etc.)

Kontakt mit der Batteriesäure vermeiden. Gefahr der Verätzung. Tragen Sie Schutzkleidung und Schutzbrille.

Keine Werkzeuge oder Gegenstände auf der Batterie ablegen.

Attention

10.13Austausch der Arbeitsstromrelais

Abbildungen ähnlich!

1. Die beiden Halteschrauben der Plastikabdeckung mit einem Phillips Schraubendreher Größe 0 oder 1.

Fig. 10.13-1: Relais

2. Entfernen der Plastikabdeckung.

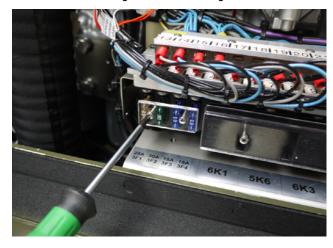
Fig. 10.13-2: Relais

3. Relais aus dem Sockel herausziehen und durch ein neues ersetzen.

4. Wiedereinbau in umgekehrter Reihenfolge.

Fig. 10.13-3: Relais

10.14Austausch der Sicherungen


Alle 2000 Betriebsstunden sollten die Sicherungen ausgetauscht werden.

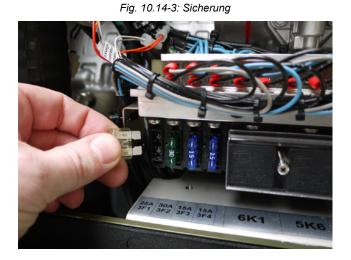
Abbildungen ähnlich!

1. Die beiden Halteschrauben der Plastikabdeckung mit einem Phillips Schraubendreher Größe 0 oder 1.



Fig. 10.14-1: Sicherung

2. Entfernen der Plastikabdeckung.



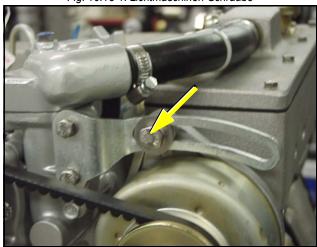
3. Mithilfe eines Sicherungsabziehers die Sicherung entfernen und durch eine neue ersetzen.

4. Wiedereinbau in umgekehrter Reihenfolge.

10.15Austausch des Keilriemens für die interne Kühlwasserpumpe

Aufgrund der relativ hohen Umgebungstemperatur in der geschlossenen Schalldämmkapsel (ca. 85 ° C) unterliegt

der Keilriemen einem erhöhten Verschleiß. Da die Luft im Schalldämmgehäuse nicht nur relativ warm, sondern auch relativ trocken ist, muss man damit rechnen, dass die "Weichmacher" in den Gummimischungen zum Teil auch schon nach relativ kurzer Betriebsdauer ihre Wirkung verlieren.


Der Keilriemen muss deshalb in sehr kurzen Zeitabständen kontrolliert werden. Es kann vorkommen, dass der Keilriemen unter ungünstigen Bedingungen schon nach einigen Wochen ausgewechselt werden muss. Eine Überprüfung ist deshalb im Abstand von 150 Betriebsstunden unbedingt erforderlich. Der Keilriemen muss als Verschleißteil gesehen werden. Es sollten deshalb in ausreichender Anzahl Ersatz-Keilriemen an Bord sein. Wir empfehlen, dazu das entsprechende Servicepaket zur Verfügung zu halten.

1. Die Schraube an der oberen Halterung der Lichtmaschine lösen.

Beispielbild

Fig. 10.15-1: Lichtmaschinen-Schraube

2. Die Schraube unter der Lichtmaschine lösen.

Beispielbild

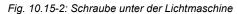
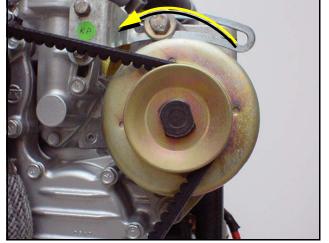



Fig. 10.15-3: Lichtmaschine

- 3. Die Lichtmaschine muss in Richtung des Thermostatgehäuse gedrückt werden.
- 4. Austausch des Keilriemens.

Beispielbild

- Der Keilriemen muss danach wieder gespannt werden.
 Dabei sollte der Keilriemen aber nur so fest angezogen werden, dass man ihn noch mit dem Daumen um ca.10 mm eindrücken kann.
- 6. Die Schrauben oberhalb und unterhalb der Lichtmaschine wieder festziehen.

Beispielbild

max. 10 mm

Fig. 10.15-4: Zeichnung Keilriemen

Leere Seite / Intentionally blank

Seite/Page 106 Kapitel/Chapter 10: Wartungshinweise 27.5.24

11. Störungen am Generator

11.1 Personal

Die hier beschriebenen Arbeiten können, soweit nicht anders gekennzeichnet, durch den Bediener ausgeführt werden.

Weitere Reparaturarbeiten dürfen nur von speziell ausgebildeten Fachpersonal oder durch Vertragswerkstätten (Fischer Panda Service Points) ausgeführt werden. Dies betrifft insbesondere Ventileinstellung, Arbeiten an der Kraftstoff-Einspritzanlage und Motorreparaturen.

Um Schäden an den Geräten zu vermeiden, sind bei Arbeiten am Generator immer alle Verbraucher abzuschalten.

Achtung: Alle Verbraucher abschalten

11.1.1 Gefahrenhinweise für für dieses Kapitel

Beachten Sie die allgemeinen Sicherheitshinweise am Anfang dieses Handbuches.

Hinweis!

LEBENSGEFAHR! Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Der Generator kann mit einem Automatikstart ausgestattet sein. Das bedeutet, ein externes Signal steuert den Automatik-Start. Es muss immer die Batteriebank abgeklemmt werden (zuerst Minuspol dann Pluspol), wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

Warnung: Automatikstart

Unsachgemäße Wartung kann zu schweren Personenoder Sachschäden führen. Deshalb:

- Wartungsarbeiten nur bei abgestellten Motor vornehmen
- Vor Beginn der Arbeiten für ausreichende Montagefreiheit sorgen
- auf Ordnung und Sauberkeit am Arbeitsplatz achten! Lose aufeinander oder umherliegende Bauteile und Werkzeuge sind Unfallquellen
- Wartungsarbeiten nur mit handelsüblichen Werkzeugen und Spezielwerkzeug durchführen. Falsches oder beschädigtes Werkzeug kann zu Verletzungen führen

!\

Warnung: Verletzungsgefahr

Öl und Kraftstoffdämpfe können sich bei Kontakt mit Zündquellen entzünden. Deshalb:

- · Kein offenes Feuer bei Arbeiten am Motor
- · nicht rauchen
- Öl und Kraftstoffrückstände vom Motor und vom Boden entfernen

Warnung: Feuergefahr

Kontakt mit Motoröl, Kraftstoff und Frostschutzmittel kann zur Gesundheitsschädigung beim Einatmen, beim Verschlucken oder bei Hautkontakt führen. Deshalb:

- · Hautkontakt mit Motoröl, Kraftstoff und Frostschutzmittel vermeiden.
- Öl und Kraftstoffspritzer umgehend von der Haut entfernen.
- Öl und Kraftstoffdämpfe nicht einatmen.

LEBENSGEFAHR! Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Die elektrischen Spannungen von über 48 V sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

Generator und Kühlwasser können bei und nach dem Betrieb heiß sein. Verbrennungs-/Verbrühungsgefahr!

Durch den Betrieb kann sich im Kühlsystem ein Überdruck bilden.

Batterien enthalten ätzende Säure und Laugen.

Durch unsachgemäße Behandlung können sich Batterien erwärmen und bersten. Ätzende Säure /Lauge auslaufen. Unter ungünstigen Bedingungen kann es zu einer Explosion kommen.

Beachten Sie die Hinweise Ihres Batterieherstellers.

Persönliche Schutzausrüstung ist ggf. zu Tragen. Hierzu Gebot: Schutzausrüstung erforderlich gehört:

- · Eng anliegende Schutzkleidung
- · Sicherheitsschuhe
- · Sicherheitshandschuhe
- Gehörschutz
- · ggf. Schutzbrille

Vorsicht: Vergiftungsgefahr

Achtung: Elektrische Spannung

Warnung: Heiße Oberfläche/Material

Warnung:

11.2 Werkzeuge und Messinstrumente

Um sich bei Störungen während der Fahrt notfalls selbst helfen zu können, sollten folgende Werkzeuge und Messgeräte zu der Ausstattung an Bord gehören:

- Multimeter für Spannung (AC/DC), Frequenz und Widerstand
- · Messgerät für Induktivität
- · Messgerät für Kapazität
- Strommesszange
- Thermometer (ideal ist ein Infrarot-Thermometer).
- · Zange zum Abdrücken

11.3 Überlastung des Generators

Bitte achten Sie darauf, dass der Motor nicht überlastet wird. Dies ist insbesondere im Zusammenhang mit Multi-Power-Aggregaten zu berücksichtigen. In diesem Falle kann die aufgelegte Last einschließlich der elektrischen Leistung erheblich höher sein als die Antriebsleistung des Motors, was auf Dauer dem Motor schadet. Außerdem sind die Abgase rußgeschwärzt (Umwelt).

Die volle Nennleistung des Generators ist in erster Linie für kurzzeitigen Gebrauch vorgesehen. Sie wird jedoch benötigt, um Elektromotoren zu starten oder besondere Anlaufvorgänge zu ermöglichen.

Als Dauerlast sollte im Interesse einer langen Lebensdauer des Motors 70 % - 80 % der Nennlast kalkuliert werden.

Unter Dauerleistung verstehen wir den ununterbrochenen Betrieb des Generators über viele Stunden. Es ist für den Motor unbedenklich, gelegentlich über 2-3 Stunden die volle Nennleistung zu liefern. Die Gesamtkonzeption des Panda Generators stellt sicher, dass der Dauerlastbetrieb auch bei extremen Bedingungen keine überhöhten Temperaturen des Motors auslöst. Grundsätzlich ist aber auch zu berücksichtigen, daß die Abgaswerte im Volllastbetrieb ungünstiger werden (Rußbildung).

Verhalten des elektrischen Generators bei Kurzschluss und Überlast

Der Generator kann durch Kurzschluss und Überlast praktisch nicht beschädigt werden. Sowohl Kurzschluss als auch Überlast bewirken, dass die elektrische Erregung des Generators aufgehoben wird. Der Generator erzeugt dann keinen Strom mehr, die Spannung bricht zusammen. Dieser Zustand wird sofort wieder aufgehoben, wenn der Kurzschluss beseitigt oder die Überlast abgeschaltet wird.

11.3.1 Generator-Ausgangsspannung ist zu niedrig

Vor dem Arbeiten am System siehe "Sicherheitshinweise ACHTUNG!

- Sicherheit geht vor!" auf Seite 17

Wenn die erzeugte Wechselspannung zu niedrig ist, sollte man zuerst nach und nach die Verbraucher abschalten, um den Generator zu entlasten. Meistens hat man hier schon das Problem gelöst. Ist die Ausgangsspannung immer noch zu niedrig, auch wenn alle Verbraucher abgeschaltet sind - der Generator also ohne Last läuft - kann man davon ausgehen, dass einer oder mehrere Kondensatoren defekt sind.

11.4 Startprobleme

11.4.1 Elektrisches Kraftstoffmagnetventil

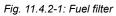
Das Kraftstoffmagnetventil befindet sich vor der Einspritzpumpe. Es öffnet automatisch, wenn bei dem Fernbedienpanel die Taste "START" gedrückt wird. Wenn der Generator auf "OFF" geschaltet wird, schließt das Magnetventil. Es dauert dann noch einige Sekunden, bevor der Generator stoppt.

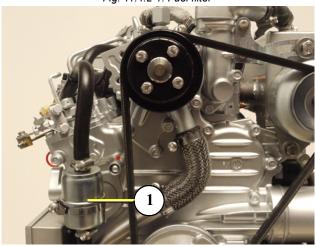
Wenn der Generator nicht anspringt oder nicht einwandfrei läuft (z.B.unruhig läuft), die Enddrehzahl nicht erreicht oder nicht einwandfrei stoppt, kommt in erster Linie das Kraftstoffmagnetventil als Ursache in Frage.

Eine Überprüfung des Kraftstoffmagnetventils erfolgt, indem man während des Betriebes den Stecker auf dem Kraftstoffmagnetventil kurzzeitig abzieht (vorher die Sicherungsschraube entfernen) und sofort wieder ansteckt. Der Motor muss auf das Wiederanstecken "scharf" reagieren, d.h. sofort hochdrehen. Wenn der Motor dabei zögernd oder "stotternd" hochdreht, ist ein Fehler am Magnetventil zu vermuten. Es ist aber auch möglich, dass sich Luft in der Kraftstoffleitung befindet.

Elektrisches Kraftstoffmagnetventil

Fig. 11.4.1-1: Elektrisches Kraftstoffmagnetventil




11.4.2 Verschmutzter Kraftstofffilter

Wenn der Kraftstofffilter verschmutzt ist muss das Filterelement gewechselt werden.

Kraftstofffilter

1. Filterelement

11.5 Tabelle zur Fehlerbeseitigung

Zur Fehlerbeseitigung Kapitel 12.1, "Fehlertabelle," auf Seite 113

Leere Seite / Intentionally blank

Seite/Page 112 Kapitel/Chapter 11: Störungen am Generator 27.5.24

12. Anhang

12.1 Fehlertabelle

GENERATOR AUSGANGSSPANNUNG IST ZU NIEDRIG (weniger as 24 V):				
Ursache Abhilfe				
PMGi Inverter ist überlasted.	Reduzierung der elektrischen Belastung (Verbrauchen abschalten).			
Motor erreicht nicht die Nenndrehzahl.	Siehe Motofehler (folgende Seiten).			

MOTOR DREHT BEIM ANLASSVORGANG NICHT			
Ursache	Abhilfe		
Batteriehauptschalter ist abgeschaltet.	Stellung des Batteriehauptschalters prüfen, gegebenenfalls einschalten (wenn vorhanden).		
Batteriespannung nicht ausreichend.	Kabelanschluss auf festen Sitz und auf Korrosion prüfen.		
Störung im Anlassstrom.	Bei normalem Startvorgang fällt bei vollen Batterien die Spannung auf max. 11V ab. Fällt diese nicht ab, ist die Leitung unterbrochen. Fällt sie weiter ab, ist die Batterie sehr entladen.		

MOTOR DREHT MIT ANLASSDREHZAHL UND STARTET NICHT	
Ursache	Abhilfe
Kraftstoffmagnetventil öffnet nicht.	Elektrische Ansteuerung bzw. Kabelverbindung prüfen (siehe DCSchaltplan: Sicherung).
Kraftstofförderpumpe arbeitet nicht	Kraftstoff-Filteranlage und Kraftstofförderpumpe prüfen, ggfls. reinigen.
Kraftstoffmangel.	Kraftstoffvorrat prüfen.
Glühkerzen defekt oder kein vorglühen	Vorglühen der Glühkerzen vor dem Start. Überprüfen der Glühkerzen.
Luft in der Einspritzanlage.	Kraftstoffleitungen auf Dichtheit prüfen. Kraftstoffsystem entlüften, bis an der Rücklaufleitung blasenfreier Kraftstoff austritt. (siehe Kap. "Entlüftung des Kraftstoffsystems")
Kraftstoffilter verstopft.	Filter erneuern.
Geringe Kompression.	Siehe Kubota-Handbuch.

Ursache	Abhilfe
Batteriespannung nicht ausreichend.	Batterie prüfen.
Motor hat Lagerschaden oder Kolbenfresser.	Reparatur durch Kubota-Service.
Kühlwasseransammlung im Brennraum.	 Generator am Fernbedienpanel ausschalten. Glühkerzen aus dem Motor herausschrauben (siehe Kubota-Handbuch) Vorsichtiges Durchdrehen des Motors von Hand. Anschließend ist das Motoröl auf Beimischungen von Wasser zu prüfen und ggfls. Motorösieb reinigen. Weiterhin ist auf jeden Fall die Ursache für den Kühlwassereintritt ist den Brennraum festzustellen und zu beseitigen.

MOTOR LÄUFT UNREGELMÄSSIG			
Ursache	Abhilfe		
	Reparatur bzw. Überprüfung des Fliehkraftreglers durch den Kubota- Service.		
Luft in dem Kraftstoffsystem.	Entlüften des Kraftstoffsystems.		

MOTOR FÄLLT IN DER DREHZAHL AB				
ache Abhilfe				
Ölüberfüllung.	Ablassen des Öls.			
Kraftstoffmangel.	Kraftstoffzufuhrsystem prüfen: - Kraftstoffilter prüfen, ggfls. erneuern - Kraftstoffförderpumpe prüfen - Kraftstoffzuleitungen prüfen ggfls. entlüften			
Luftmangel.	Luftzufuhr prüfen, Luftfilter-Ansaugbereich prüfen, ggfls. reinigen.			
Generator überlastet durch Verbraucher.	Verbraucher reduzieren.			
Generator defekt (Wicklung, Lager oder sonstiges Beschädigung).	Generator zum Hersteller einschicken und dort Lagerschaden bzw. Wicklungsschaden beseitigen lassen.			
Motorschaden.	Lagerschaden etc. durch Kubota-Service beseitigen lassen.			

MOTOR LÄUFT IN "AUS"-STELLUNG WEITER	
Cause	Solution
Magnetventil stellt nicht ab.	Zuleitung zum Magnetventil prüfen. Hubmagnet prüfen, ggfls. erneuern. Siehe Abschnitt "Elektrisches Kraftstoff-Magnetventil".

MOTOR STELLT SICH VON SELBST AB			
Ursache	Abhilfe		
Kraftstoffmangel.	Kraftstoffzufuhr prüfen.		
Überhitzung im Kühlsystem durch Übertemperatur/Kühlwassermangel.	Kühlsystem prüfen, Wasserpumpe und Kühlwasserstand prüfen.		
Ölmangel.	Ölstand prüfen, ggfls. nachfüllen, Öldruck am Motor prüfen, ggfls. Reparatur durch Kubota-Service.		

RUSSGESCHWÄRZTE ABGASWOLKEN				
Ursache	Abhilfe			
Überlastung.	Eingeschaltete Verbraucher prüfen, ggfls. reduzieren.			
Unzureichende Luftzufuhr.	Luftfilter prüfen, ggfls. reinigen.			
Einspritzdüse defekt	Einspritzdüse ersetzen.			
Ventilspiel nicht richtig.	Ventilspiel einstellen (siehe Kubota-Handbuch).			
Schlechte Kraftstoffqualität.	Gute Kraftstoffqualität (Dieselkraftstoff 2-D) verwenden.			
Unvollkommene Verbrennung.	Hier ist eine unzureichende Vergasung oder ein unzureichender Einspritzzeitpunkt durch den Kubota-Service zu beheben.			
Geringe Kompression	Siehe Kubota-Handbuch.			

DAS AGGREGAT MUSS SOFORT ABGESTELLT WERDEN, WENN:			
Ursache	Abhilfe		
 die Drehzahl des Motors plötzlich steigt oder fällt, ein unerklärliches Geräusch plötzlich hörbar wird, die Auspuffgasfarbe plötzlich dunkel wird, die Motorlager überhitzt sind, die Ölkontrolleuchte während des Betriebs aufleuchtet. 	Entweder wie zuvor unter "Störungen" beschrieben oder durch einen Kubota-Service oder Panda Vertretung.		

12.2 Technische Daten

Fig. 12.2-1: Technische Daten iGeneratoren

	Panda 5000i	Panda 8000i	Panda 10000i	Panda 15000i/19i	Panda 25i
Тур	EA300	Z482	Z602	D902	Kubota V1505
Drehzahlregelung	iControl2	iControl2	iControl2	iControl2	iControl2
Automatik Startbooster	nein	nein	nein	nein	nein
Zylinder	1	2	2	3	4
Bohrung	75 mm	67 mm	72 mm	72 mm	78 mm
Hub	70 mm	68 mm	73,6 mm	73,6 mm	78,4 mm
Hubraum	309 cm ³	479 cm³	599 cm³	898 cm ³	1498 cm³
Max. Leistung (DIN 6271-NB) bei 3000 UpM	5,1 kW	9,32 kW	11,6 kW	17,5 kW	23,3 kW
Nenndrehzahl	2800 rpm	2800 rpm	2800 rpm	2800 rpm(15000i) /3600rpm (19i)	2800 rpm
Effektive Drehzahl ohne Last ²	2400 rpm	2400 rpm	2400 rpm	2400 rpm	2000 rpm
Ventilspiel (Kalter Motor)	0,16 - 0,20 mm	0,2 mm	0,2 mm	0,2 mm	0,2 mm
Anzug für Zylinderkopfschraube geölt	58,8 - 63,7 Nm	42 Nm	42 Nm	42 Nm	68 Nm
Verdichtungsverhältnis		23:1	24:1	24:1	22:1
Schmierölfüllung	1,3	2,8 I	2,8 I	3,7 I	6,0 I
Kraftstoffverbrauch ³	ca. 0,42 - 1,12 I	ca. 0,7-1,8 I	ca. 1,0-2,66 l	ca. 1,3-3,6 l	ca. 1,20-3,36 l
Schmierölverbrauch	max. 1 % vom Kra	aftstoffverbrauch			
Schmierölspezifikation	API CF	API CF	API CF	API CF	API CF
Kühlwasserbedarf des Seewasserkreislaufes (bei Marine Generatoren)		16-28 l/min	16-28 l/min	16-28 I/min	28-40 l/min
Zulässige Dauerschräglage max.	a) 25° gegen die l b) 20° in der Moto				
Empfohlene Starterbatteriegröße	12 V 28 Ah äquivalent	12 V 28 Ah äquivalent	12 V 36 Ah äquivalent	12 V 52 Ah äquivalent	12 V 70 Ah eäquivalent
Empfohlener Batteriekabelquerschnitt max. Länge 4 Meter	25 mm²	25 mm²	25 mm²	25 mm²	25 mm²
Maximaler Abgasgegendruck		9,3 kPa 93 Millibar²	9,3 kPa 93 Millibar	9,3 kPa 93 Millibar²	10,7 kPa 107 Millibar

 $^{^{\}rm 3}$ 0,35 l/kW elektrisch Leistung, hier die umgerechneten Werte von 30 % bis 80 % der Nennleistung

Fig. 12.2-2: Technische Daten iGeneratoren

	Panda 45i		
Тур	Kubota V2403		
Drehzahlregelung	iControl2		
Automatik Startbooster	nein		
Zylinder	4		
Bohrung	87 mm		
Hub	102,4 mm		
Hubraum	2434 cm ³		
Max. Leistung (DIN 6271-NB) bei 3000 UpM	31,1 kW		
Nenndrehzahl	2700 Upm		
Effektive Drehzahl ohne Last ²	1600 UpM		
Ventilspiel (Kalter Motor)	0,18 - 0,22 mm		
Anzug für Zylinderkopfschraube geölt	93,1 - 98 Nm		
Verdichtungsverhältnis			
Schmierölfüllung	9,5 I		

	Panda 45i			
Kraftstoffverbrauch ³	ca. 1,95 - 5,2 l			
Schmierölverbrauch	max. 1 % vom Kra	ftstoffverbrauch		
Schmierölspezifikation	API CF			
Kühlwasserbedarf des Seewasserkreislaufes (bei Marine Generatoren)	55-80 l/min			
Zulässige Dauerschräglage max.	a) 25° gegen die Motorachse b) 20° in der Motorachse			
Empfohlene Starterbatteriegröße	12 V 136 Ah äquivalent			
Empfohlener Batteriekabelquerschnitt max. Länge 4 Meter	70 mm²			
Maximaler Abgasgegendruck	10,7 kPa 107 Millibar			

 $^{^{3}}$ 0,35 l/kW elektrisch Leistung, hier die umgerechneten Werte von 30 % bis 80 % der Nennleistung

12.2.1 Leitungsdurchmesser

Fig. 12.2.1-1: Leitungsdurchmesser

Generatortyp	Ø Kühlwasserle	Ø Kühlwasserleitung		Ø Fuel conduit	
	Fresh water [mm]	Raw water [mm]		Supply [mm]	Return [mm]
Panda 25i PMS	25	20	50	8	8

12.3 Kabelquerschnitte

Fig. 12.3-1: Kabelquerschnitte

Länge	1 - 3 m	4 - 6 m	7 - 10 m	11 - 15 m	16 - 20 m
16 mm²	70 A	63 A	55 A	48 A	42 A
25 mm²	112 A	100 A	88 A	75 A	63 A
35 mm²	145 A	130 A	110 A	100 A	90 A
50 mm²	225 A	200 A	175 A	150 A	125 A
70 mm²	275 A	250 A	225 A	195 A	170 A
95 mm²	340 A	300 A	280 A	260 A	220 A

12.4 Motoröl

12.4.1 Motorenöl Klassifizierung

Die Qualität eines Motoröls wird durch den API-Standard (American Petroleum Institute) spezifiziert. Die API-Bezeichnung ist auf jedem Motorenölgebinde zu finden. Der erste Buchstabe ist immer ein C.

12.4.2 SAE Klassen Motoröl

Motorenölsorte	
Über 25 °C	SAE10W-40; SAE 15W-40;SAE 20W-50
0 °C bis 25 °C	SAE10W-40
Unter 0 °C	SAE10W-40;SAE 5W-40

12.5 Kühlwasser

Als Kühlmittel muss eine Mischung aus Wasser und Frostschutz benutzt werden. Das Frostschutzmittel muss für Aluminium geeignet sein. Im Interesse der Sicherheit muss die Konzentration der Frostschutzlösung regelmäßig überprüft werden.

Fischer Panda empfiehlt das Produkt: GLYSANTIN PROTECT PLUS/G 48

12.5.1 Empfohlenes Frostschutzmittel

Kühlerschutz Kfz Industrie	Produktbeschreibung	
Produktname	GLYSANTIN ® PROTECT PLUS / G48	
Chemie	Monoethylenglykol mit Inhibitoren	
Lieferform	Flüssigkeit	

Chemische und physikalische Eigenschaften				
Alkalireserve von 10 ml ASTM D 1121 13 – 15 ml HCl 01 mol/l				
Dichte, 20°C	DIN 51 757 Verfahren 4	1,121 – 1,123 g/cm ³		
Wassergehalt	DIN 51 777 Teil 1	Max. 3,5 %		
pH-Wert original	AST M D 1287	7,1 – 7,3		

12.5.2 Verhältnis Kühlwasser/Frostschutz

Wasser/Frostschutz	Temperatur
70:30	-20 °C
65:35	-25 °C
60:40	-30 °C
55:45	-35 °C
50:50	-40 °C

12.6 Kraftstoff

Als Kraftstoff ist sauberes, dünnflüssiges Dieselöl nach DIN590:1999 oder besser zu verwenden. Bei Generatoren mit Common-Rail Technik und/oder Dieselpartikelfilter nach DIN590:2009 oder besser.

Verwenden Sie keine alternativen Kraftstoffe, da diese in der Qualität unbekannt und somit unter Umständen qualitativ schlechter sind. Kraftstoffe mit einer niedrigen Cetanzahl beeinträchtigen die Funktion des Generators.

12.7 CO2 Bilanz aus dem Abgasmesszyklus bei Motoren nach 2016/1628 EC

Für Generatoren die nach 2016/1628 EC zugelassen sind gilt, bezogen auf den Motor, nachfolgende CO2- Bilanz aus dem Abgasmesszyklus:

Fig. 12.7-1: CO2 Bilanz aus dem Abgasmesszyklus bei Motoren nach 2016/1628 EC

	CO2- Bilanz aus dem Abgasmesszyklus				
Engine	Engine Category	Engine family type	Type approval	CO2 Bilance Testcycle [g/kwh]	
Z482	NRE-v-2	HKBXL.778KCB	e1*2016/1628*2016/1628EV2/D*0008*00	1010.0	
D722	NRE-v-2	HKBXL.778KCB	e1*2016/1628*2016/1628EV2/D*0008*00	1019,8	
Z602	NRE-v-2	HKBXL.898KCB	e1*2016/1628*2016/1628EV2/D*0009*00	1047.4	
D902	NRE-v-2	HKBXL.898KCB	e1*2016/1628*2016/1628EV2/D*0009*00	- 1047.4	
D1105	NRE-v-2	HKBXL01.5BCB	e1*2016/1628*2016/1628EV2/D*0010*04	1018.0	

Der Abgasaufkleber am Ventildeckel zeigt an, zu welcher Abgashomogolation der Motor zugehörig ist.

13. Inverter Panda PMGi

	Dokument	Hardware	Software
Aktuell:	R03		
Ersetzt:	R02		

Fig. 13.0-1: Beispielbild PMGi 8000

13.1 Sicherheitshinweise

Elektrische Spannung LEBENSGEFAHR! -Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Die elektrischen Spannungen von über 60 V sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

Warnung: Elektrische Spannung

Der PMGi darf nicht mit abgenommener Abdeckhaube in Betrieb genommen werden.

Alle Service-, Wartungs- oder Reparaturarbeiten am Aggregat/PMGi dürfen nur bei stehendem Motor vorgenommen werden.

13.2 Typenschild

1. Typenschild am PGMi

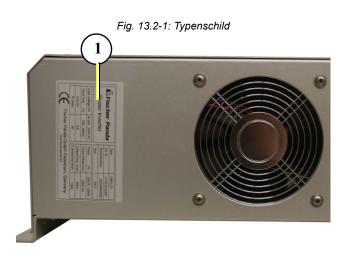
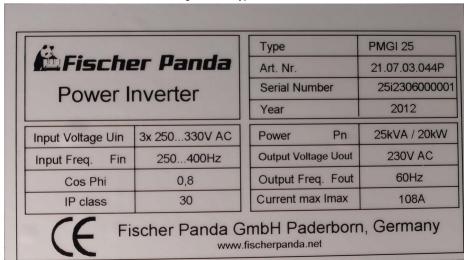



Fig. 13.2-2: Typenschild

13.3 Vorderseite / Anschlussseite 230 V Beispielbild

Zum Anschluss Panda PMGi ist der Generator mit dem vorbereiteten Kabel (Stecker 4pol) mit der Buchse 3 zu verbinden (450V / 400Hz Seite - PMGi Eingang)

Der Bordverteilerkasten ist mit der Buchse 1 (Stecker 3 pol) zu verbinden. (230V - 50 Hz/60 Hz AC Seite - PMGi Ausgang

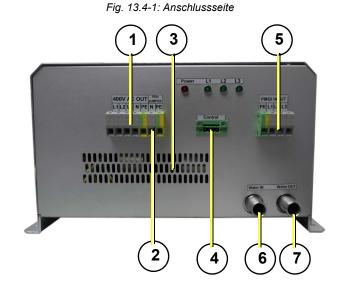
Der Lüftungsgrill muss immer frei bleiben (4)

- 1. Buchse für Last (PMGi Ausgang)
- 2. PE/N Brücke
- 3. FP- Bus Verbindung zum Generator
- 4. Lüftungsgrill
- 5. Kühlwasser Ausgang (heiße Seite)
- 6. Kühlwasser Eingang (kalte Seite)
- 7. Buchse für Generator Anschluss (PMGi Eingang)

1 3 5 7

PAILURE IN PRICE IN PRICE IN THE PR

Fig. 13.3-1: Anschlussseite


13.4 Vorderseite / Anschlussseite 400 V Beispielbild

Zum Anschluss Panda PMGi ist der Generator mit dem vorbereiteten Kabel (Stecker 4pol) mit der Buchse 3 zu verbinden (450V / 400Hz Seite - PMGi Eingang)

Der Bordverteilerkasten ist mit der Buchse 1 (Stecker 3 pol) zu verbinden. (400V/50Hz AC Seite - PMGi Ausgang

Der Lüftungsgrill muss immer frei bleiben

- 1. Buchse für Last (PMGi Ausgang)
- 2. PE/N Brücke
- 3. Lüftungsgrill
- 4. FP- Bus Verbindung zum Generator
- 5. Buchse für Generator Anschluss (PMGi Eingang)
- 6. Kühlwasser Eingang (kalte Seite)
- 7. Kühlwasser Ausgang (heiße Seite)

13.5 Vorderseite / Anschlussseite 120 V/240 V Beispielbild

Zum Anschluss Panda PMGi ist der Generator mit dem vorbereiteten Kabel (Stecker 4pol) mit der Buchse 3 zu verbinden (450V / 400Hz Seite - PMGi Eingang)

Der Bordverteilerkasten ist mit der Buchse 1 (Stecker 3 pol) zu verbinden. (120 V/240 V- 50/60Hz AC Seite - PMGi Ausgang

Der Lüftungsgrill muss immer frei bleiben

- 1. Buchse für Last (PMGi Ausgang)
- 2. PE/N Brücke
- 3. Lüftungsgrill
- 4. Buchse für Generator Anschluss (PMGi Eingang)
- 5. FP- Bus Verbindung zum Generator
- 6. Kühlwasser Eingang (kalte Seite)
- 7. Kühlwasser Ausgang (heiße Seite)

1 3 5

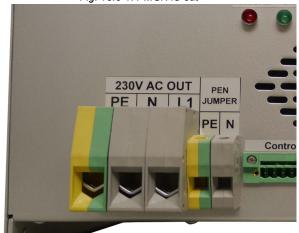
AC UT ANY ANY PROJECT IN THE LILY IN THE LILY IN WATER BY W

Fig. 13.5-1: Anschlussseite

13.5.1 Buchsenbelegung des PMGi

Das Aufschalten einer Phase auf Pin1 (Schutzleiter) zerstört den PMGi.

Achtung:


13.5.1.1 PMGi AC out

Einphasiger Ausgang

Anschlusspunkt für die Unterverteilung des Kunden

Beispielbild

Fig. 13.5-1: PMGi AC out

3-Phasiger PMGi AC out

Anschlusspunkt für die Unterverteilung des Kunden

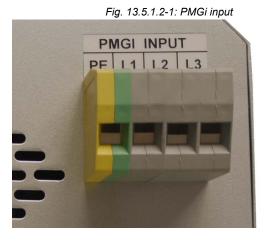
Beispielbild

Einphasiger Ausgang - PMGi AC out mit interner PE/N Brücke.

Bei PMGi wo die PE/N Brücke neben dem "Power out" fehlt, ist eine interne PE/N Brücke installiert (z.B. PMGi 5000)

Anschlusspunkt für die Unterverteilung des Kunden

Beispielbild



13.5.1.2 PMGi input

PMGi input

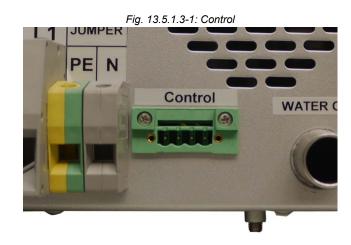
Das "Power Out" Kabel des Generators wird hier angeschlossen.

Beispielbild

PMGi input alternative Version

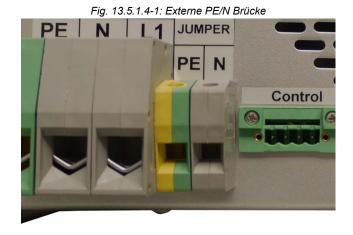
Das "Power Out" Kabel des Generators wird hier angeschlossen.

Beispielbild


Fig. 13.5.1.2-2: PMGi input

13.5.1.3 Control

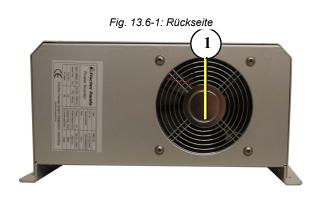
Das Control Kabel des Generators wird hier angeschlossen


Beispielbild

13.5.1.4 Externe PE/N Brücke

Die PE/N Brücke kann hier für den Betrieb mit RCD geschlossen werden oder entfernt werden für eine Isolations Überwachung.

Beispielbild



13.6 Rückseite - Oberseite

Der Panda PMGi ist mit einem internen Lüfter ausgestattet. Die entsprechenden Lüftungsbohrungen auf der Oberseite dürfen nicht abgedeckt werden.

01. Lüftungslöcher

Durch den Generator liegt am PMGi eine lebensgefährliche Spannung von bis zu 550 V an. Das Gehäuse des PMGi darf nur vom ausgebildeten Fachpersonal geöffnet werden! LEBENSGEFAHR!

Stellen Sie sicher, dass der PMGi elektrisch fest mit dem Generator verbunden ist. Der PMGi darf nicht bei laufendem Generator an oder ausgeschaltet werden. Dies kann den PMGi schädigen oder zerstören. (mögliche Brand oder Explosionsgefahr.

Achtung!

13.7 Einstellungen zum Betrieb von iGeneratoren mit Lade/Wechselrichtern

Beim Betrieb mit Lade/Wechselrichtern, müssen die Einstellungen der Lade/Wechselrichter entsprechend angepasst werden, um einen Betrieb mit den PMGi Invertern zu gewährleisten. Achtung! Falsche Einstellungen können den PMGi zerstören

Falsche Einstellungen können den PMGi Inverter beschädigen oder zerstören.

Die Einstellungsbeispiele für Victron müssen für andere Lade/Wechselrichter entsprechend angepasst werden.

13.7.1 Einstellungen in der Victron VE Configure II Software - General

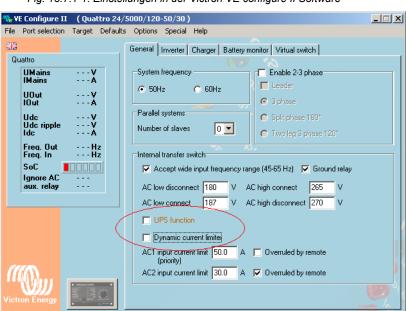


Fig. 13.7.1-1: Einstellungen in der Victron VE configure II Software

13.7.1.1 Uninterrupted AC power (UPS funktion)

Durch das zu schnelle Umschalten von Generator auf Landstrom kommt es zu einer Überlastung des PMGi. Der PMGi schaltet mit Fehler ab.

UPS Funktion muss deaktiviert sein.

13.7.1.2 Dynamic current limiter

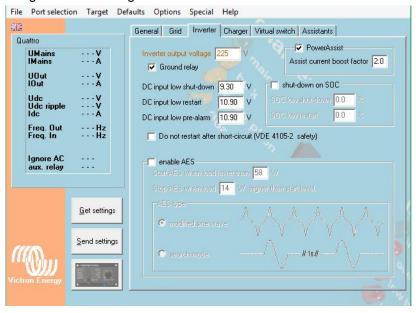
Dynamic current limiter führt bei Induktiver Belastung zur Spannungserhöhung im DC-Zwischenkreis. Die damit verbundene Überspannung kann den PMGi schädigen oder zerstören.

Dynamic current limiter muss deaktiviert sein.

13.7.2 Einstellungen in der Victron VE Configure II Software - Inverter

🗽 VE Configure II (Quattro 24/5000/120-50/30) _ | X Target Defaults Options Special Help General Inverter Charger Battery monitor Virtual switch Quattro Inverter output voltage 230 Assist current boost fector 1.3 DC input low shut-down 18.60 V DC input low restart 22.40 V DC input low alarm 22.40 V Freg. Out Freg. In enable AES-Start AES when load lower than 58 W SoC Stop AES when load 14 W higher than start level. Ignore AC search mode

Fig. 13.7.2-1: Einstellungen in der Victron VE Configure II Software


13.7.2.1 Assist current boost factor

Um den Einfluss des Lade/wechselrichters auf die Steuerung des Generator zu minimieren, muss der Assist current boost factor von 2.0 auf 1.3 eingestellt weden. Eine falsche Einstellung führt zu einem schlechten Regelverhalten des Generators.

13.7.3 Victron AC out

Beim Abschalten größerer Verbraucher kann es durch Spannungs- Regelvorgänge im Victron Wechselrichter als auch im PMGI zu Spannungserhöhungen kommen und somit zum Over Voltage Alarm am Generator

Fischer Panda empfiehlt folgende Einstellungen.

13.8 Betriebsanleitung

13.8.1 Vorbemerkungen/Winterbetrieb

Der PMGi ist für einen Temperaturbereich von -20°C bis +40°C ausgelegt.

13.8.2 Belastung des PMGi im Dauerbetrieb

Bitte achten Sie darauf, dass der PMGi nicht überlastet wird. In diesem Falle schaltet der PMGi ab.

13.8.3 Automatikstart

Der Generator kann (je nach Fernbedienpanel) durch eine Automatikstart funktion gestartet werden.

Beim Nutzen der Autostart Funktion muss sichergestellt sein, dass es zu keiner Überlastung des PMGi kommt. (z.B. durch erhöhte Anlaufströme der angeschlossenen Geräte)

Es ist sicherzustellen, dass die Last erst auf den PMGi geschaltet wird, wenn die nominale Ausgangsspannung (230V / 50Hz) erreicht ist. (z.B. durch ein Schütz, das erst bei 230V anzieht)

13.9 Betriebsanzeigen/Fehlermeldungen - LED Anzeigen

LED	Bedeutung
Rot blinkt	nicht unterstützter Generatortyp.
Rot leuchtet	Fehler
Rot an grün blinkt	Override mode
Rot aus grün leuchet	AC OK.
Rot aus grün blinkt	AC OK, Inverter Slave mode
ROT AN grün an	Generator stoppt.

13.10 Kühlung des PMGi

Im Inneren des PMGi ist ein Lüfter verbaut.

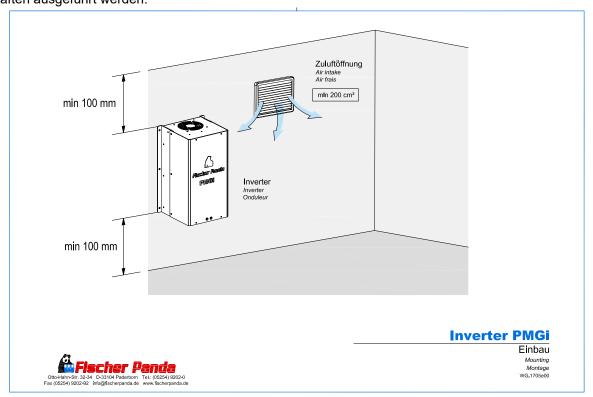
Die Lüftungsschlitze und Bohrungen am Gehäuse das PMGi dürfen nicht abgedeckt werden.

Der Kühlkörper und der Lüfter können durch den normalen Generatorbetrieb verschmutzen, was ihre Kühleigenschaft vermindert. Es ist nötig alle 6 Monate eine Sichtprüfung durchzuführen und diese Teile gegebenenfalls mit Druckluft zu reinigen

Beim normalen Generator Service sollten die Teile auch gründlich gereinigt werden. Da in der PMGi eine Lebensgefährliche Spannung anliegt ist dieses nur vom ausgebildeten Fachpersonal durchzuführen.

13.11 Installation des PMGi

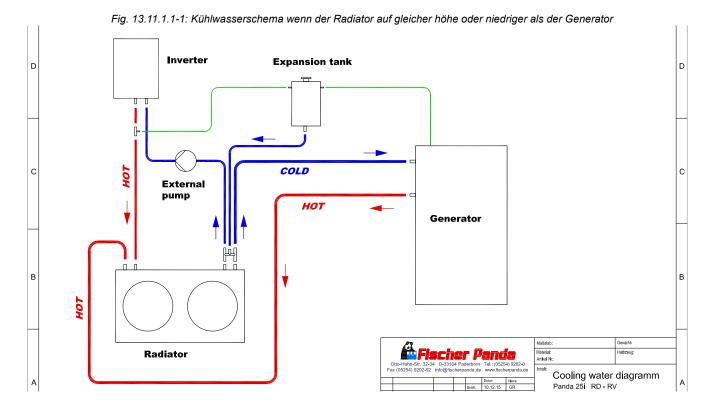
Der PMGi ist senkrecht zu montieren, so dass die elektrischen Anschlüsse nach unten zeigen und die Schrift auf dem Gehäuse lesbar ist.


Die Oberfläche der Wandung sollte eben sein und die Wärmeableitung unterstützen. Die Lüftungsschlitze und Bohrungen müssen frei sein und eine ausreichende Frischluftzufuhr und Warmluftableitung ist zu gewährleisten.

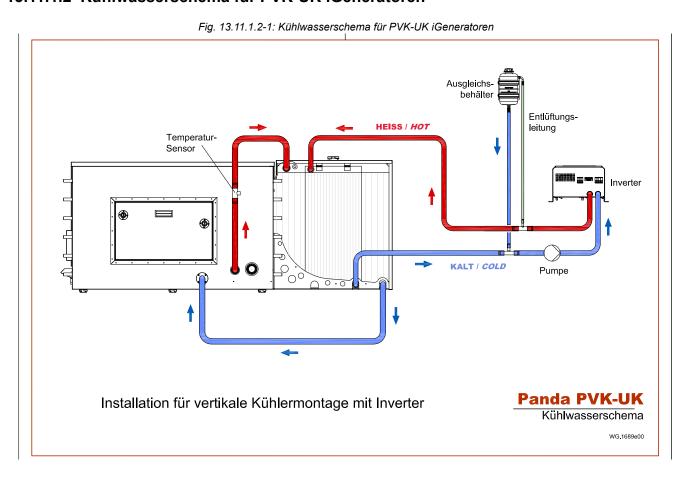
Zum Montieren sind die Montagelöcher zu verwenden.

Beachten Sie bei der Installation die Sicherheitshinweise Wichtig! im Generator und PMGi Handbuch

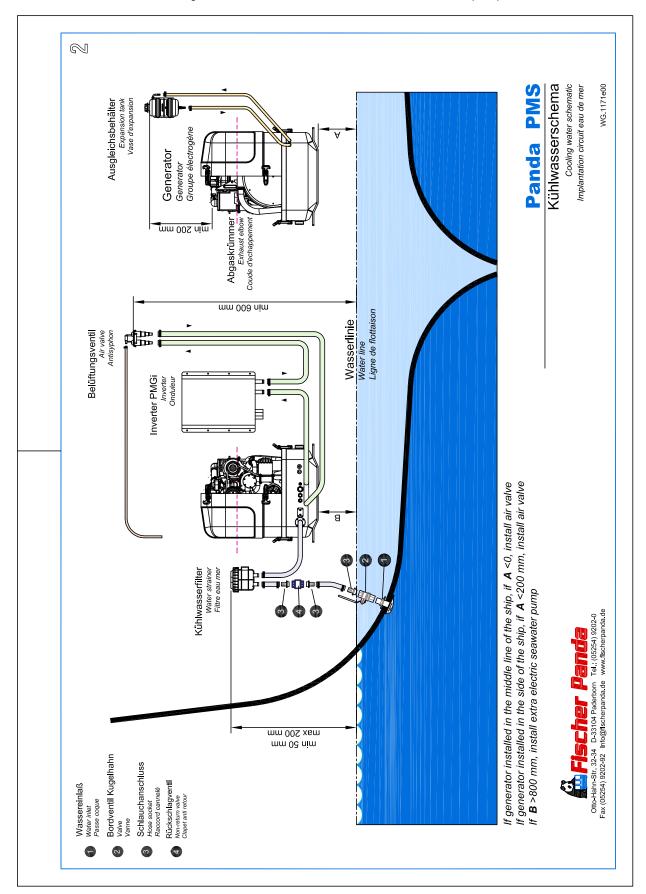
Beachten Sie die örtlichen und nationalen Einbauvorschriften. Elektroinstallationen dürfen nur von ausgebildeten Fachkräften ausgeführt werden.



13.11.1 Kühlwasser schema - Fahrzeug Generator


13.11.1.1 Integrieren des PMGi in das Kühlsystem.

Der wassergekühlte PMGi benötigt einen eigenen Kühlwasserkreis. Normalerweise wird hier ein kleiner Radiator der am großen Generator Radiator vorgesetzt ist benutzt. Der PMGi Kreis braucht seine eigene elektrische Wasserpumpe, diese wird über den Power Out des PMGi versorgt.


13.11.1.2 Kühlwasserschema für PVK-UK iGeneratoren

13.11.1.3 Kühlwasserschema für Marine Generatoren (PMS)

Fig. 13.11.1.3-1: Kühlwasserschema für Marine Generatoren (PMS)

13.11.2 Elektrischer Anschluss

Die elektrischen Anschlüsse dürfen nur vom Fachmann ausgeführt werden. Nationale Bestimmungen und die Sicherheitshinweise im Generatorhandbuch sind zu beachten.

Sollte eine Kabelverlängerung durchgeführt werden, so ist auf der PMGi Ausgangsseite ein isoliertes Feuersicheres Gummikabel zu verwenden. Die Kabellänge und der Kabelquerschnitt sind vom Spannungsabfall abhängig. Der Spannungsabfall im Kabel darf 2,5% der Nominalspannung nicht überschreiten.

Beachten Sie die Pinbelegung der Buchsen. Siehe "Vorderseite / Anschlussseite 230 V Beispielbild" auf Seite 121.

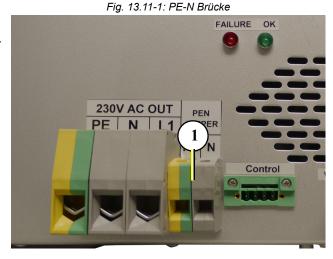
Überschüssiges Anschlusskabel immer auf das richtige Achtung maß kürzen, nicht aufrollen.

Kabelrollen wirken als Spulen.

13.11.2.1 Anschluss an ein RCD überwachtes System

Der PMGi ist vorbereitet für den Anschluss an ein RCD überwachtes System.

Der Ausgang des PMGi (PE,N,L) ist 1:1 mit dem Eingang der Unterverteilung auf der Kundenseite zu verbinden. Hierbei werden Phase und Neutralleiter (L,N) mit dem Eingang des RCD verbunden. Der PE wird mit dem PE in der Unterverteilung verbunden. Nach der Installation ist die Funktion des RCD zu testen.


Es ist darauf zu achten, das die PE/N Brücke installiert ist

PE-N Brücke

Die PEN Brücke wird in den vorbereiteten Buchsen installiert.

01. Vorbereitete Buchsen für die PE/N Brücke

Beispielbild

13.11.2.2 Anschluss an Systeme mit Isolationsüberwachung.

Für den Einsatz des PMGi in einem isolations überwachten Netz, muss die interne PE-N Brücke im PMGi entfernt werden.

13.12Technische Daten

13.12.1 Allgemeine Daten

PMGi gehört zum Fischer Panda iGenerator und darf an anderen Generatoren / für andere Zwecke nur mit Einschaltstrombegrenzung eingesetzt werden.

Lagertemperatur	PMGi	-20°C to +55°C
-ago: tomporatar	·•	20 0 10 100 0

Arl	peitstemperatur	PMGi	Minimum: -20°C
			Maximum: +40°C
			Maximale interne Temperatur des PMGi: +60°C

13.12.2 Generator Spezifikation

PMG Generator Ausgang		3 phase
Spannung pro Phase	minimum 250V AC	Maximum 550V AC
Ausgangs-Frequenz	minimum 250 Hz	Maximum 650 Hz

13.12.3 PMGi Ausgangs-Spezifikation

Fig. 13.12.3-1: Technische Daten PMGit / Technical data PMGi / PMGi Out

		PMGi 4000 230 V	PMGi 5000 230 V	PMGi 5000 120 V
Nominale Ausgangsspannung Nominal Voltage Tension de sortie nominale:	NOV _{AC}	230 V VAC +/- 5 % ohne Last / without Load / sans charge	230 V VAC +/- 5 % ohne Last / without Load / sans charge	120 V VAC +/- 5 % ohne Last / without Load / sans charge
Regelung Regulation Réglage	R	5 %	5 %	5 %
Stabilität (Kurzzeit (30sec)) Stability (short term (30sec)) Stabilité (courte durée (30s))	D _s	5 %	5 %	5 %
Stabilität (Langzeit (4h)) Stability (Long term (4h)) Stabilité (longue durée (4h))	D ₁	5 %	5 %	5 %
Spannungsabweichung Voltage offset Divergence de tension	V _{offset}	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C
Stromstärke Current Courant	Stromstärke _{Nominal} Current _{Nominal} Courant _{Nominal}	17.4 A @230 V _{eff.}	17,4 A @230 V _{eff.}	33 A @ 120 V _{eff.}
	Stromstärke _{Maximum} Current _{Maximum} Courant _{Maximum}	19.5 A @ cos phi 0,8 @230 V _{eff.}	22 A @ cos phi 0,8 @230 V _{eff.}	42 A @ cos phi 0,8 @120 V _{eff.}
Leistung Power Puissance	Nominal Nominal power Nominale	4,3 kVA	5,0 kVA	5,0 kVA
	Dauer Long term	3,6 kW	3,6 kW	3,6 kW
Frequency Fréquence	Nominale Frequenz Nominal Frequency Fréquence nominale	50 Hz +/-2 %	50 Hz +/-2 %	60 Hz +/-2 %
	Regulierung Regulation Réglage	4 %	4 %	4 %
	Stabilität (Kurzeitig) (30 s)) Stability (short term (30 s)) Stabilité (courte durée (30 s))	3 %	3 %	3 %
	Stabilität (Langzeit (4 h)) Stability (Long term (4 h)) Stabilité (longue durée (4 h))	3 %	3 %	3 %
Krestfaktor ¹⁾ Crestfactor ¹⁾ Facteur de crête		3:1	3:1	3:1
Empfohlene Absicherung Recommend protection fuse Sécurisation recommandée		20 A	25 A	40 A
Empfohlener Kabelquerschnitt Recommend cable cross Section de câble recommandée		2,5 mm²	2,5 mm²	6 mm²
Umgebungstemperatur max. Ambient temperature		40 °C	40 °C	40 °C

¹⁾ Peak Strom darf den 3-fachen Nennstrom erreichen

1) Peak current is allowed to reach 3 times of the nominal current

Fig. 13.12.3-2: Technische Daten PMGi / Technical data PMGi / PMGi Out

		PMGi 5000 110 V	PMGi 8000 230 V	PMGi 8000 110 V
Nominale Ausgangsspannung Nominal Voltage Tension de sortie nominale:	NOV _{AC}	110 V VAC +/- 5 % ohne Last / without Load / sans charge	230 V VAC +/- 5 % ohne Last / without Load / sans charge	110 V VAC +/- 5 % ohne Last / without Load / sans charge
Regelung Regulation Réglage	R	5 %	5 %	5 %
Stabilität (Kurzzeit (30sec)) Stability (short term (30sec)) Stabilité (courte durée (30s))	D _s	5 %	5 %	5 %
Stabilität (Langzeit (4h)) Stability (Long term (4h)) Stabilité (longue durée (4h))	D _I	5 %	5 %	5 %
Spannungsabweichung Voltage offset Divergence de tension	V _{offset}	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C
Stromstärke Current Courant	Stromstärke _{Nominal} Current _{Nominal} Courant _{Nominal}	36 A @ 110 V _{eff.}	26,0 A @230 V _{eff.}	54,4 A @110 V _{eff.}
	Stromstärke _{Maximum} @230 V eff. Current _{Maximum} @230 V _{eff.} Courant _{Maximum} @230 V _{eff.}	45,8 A @ cos phi 0,8 @110 V _{eff.}	34 A @ cos phi 0,8 @230 V _{eff.}	71 A @ cos phi 0,8 @110 V _{eff.}
Leistung Power Puissance	Nominal Nominal power Nominale	5,0 kVA	8,0 kVA	8,0 kVA
	Dauer Long term	3,6 kW	6,4 kW	6,4 kW
Frequenz Frequency Fréquence	Nominale Frequenz Nominal Frequency Fréquence nominale	60 Hz +/-2 %	50 Hz/60 Hz +/-2 %	50 Hz/60 Hz +/-2 %
	Regulierung Regulation Réglage	4 %	4 %	4 %
	Stabilität (Kurzeitig) (30 s)) Stability (short term (30 s)) Stabilité (courte durée (30 s))	3 %	3 %	3 %
	Stabilität (Langzeit (4 h)) Stability (Long term (4 h)) Stabilité (longue durée (4 h))	3 %	3 %	3 %
Krestfaktor ¹⁾ Crestfactor ¹⁾ Facteur de crête		3:1	3:1	3:1
Empfohlene Absicherung Recommend protection fuse Sécurisation recommandée		40 A	32 A	63 A
Empfohlener Kabelquerschnitt Recommend cable cross Section de câble recommandée		6 mm²	4 mm²	10 mm²
Umgebungstemperatur max. Ambient temperature		40 °C	40 °C	40 °C

¹⁾ Peak Strom darf den 3-fachen Nennstrom erreichen

¹⁾ Peak current is allowed to reach 3 times of the nominal current

Fig. 13.12.3-3: Technische Daten PMGi / Technical data PMGi / PMGi Out

		PMGi 8000 120 V	PMGi 10000 230 V	PMGi 10000 120 V
Nominale Ausgangsspannung Nominal Voltage	NOV _{AC}	120 V VAC +/- 5 % ohne Last / without Load / sans charge	230 V VAC +/- 5 % ohne Last / without Load / sans charge	120 V VAC +/- 5 % ohne Last / without Load / sans charge
Regelung Regulation	R	5 %	5 %	5 %
Stabilität (Kurzzeit (30sec)) Stability (short term (30sec))	D_s	5 %	5 %	5 %
Stabilität (Langzeit (4h)) Stability (Long term (4h))	D _I	5 %	5 %	5 %
Spannungsabweichung Voltage offset Divergence de tension	V _{offset}			+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C
Stromstärke Current Courant	Stromstärke _{Nominal} Current _{Nominal} Courant _{Nominal}	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	66,7 A @120V _{eff.}
	Stromstärke _{Maximum} Current _{Maximum} Courant _{Maximum}	53 A @ 120 V _{eff.}	34,8 A @230 V _{eff.}	83,3 A @ cos phi 0,8 @120 V _{eff.}
Leistung Power Puissance	Nominal Nominal power Nominale	67 A @ cos phi 0,8 @120V _{eff.}	43,5 A @ cos phi 0,8 @230 V _{eff.}	10,0 kVA
	Dauer Long term Continue	8 kVA	10,0 kVA	8,0 kW
Frequenz Frequency	Nominale Frequenz Nominal Frequency Fréquence nominale	6,4 kW	8,0 kW	60 Hz +/-2 %
	Regulierung Regulation Réglage	60 Hz +/-2 %	50 Hz +/-2 %	4 %
	Stabilität (Kurzeitig) (30 s)) Stability (short term (30 s)) Stabilité (courte durée (30 s))	4 %	4 %	3 %
	Stabilität (Langzeit (4 h)) Stability (Long term (4 h)) Stabilité (longue durée (4 h))	3 %	3 %	3 %
Krestfaktor ¹⁾ Crestfactor ¹⁾ Facteur de crête		3 %	3 %	3:1
Empfohlene Absicherung Recommend protection Fuse Sécurisation recommandée		3:1	3:1	80 A
Empfohlener Kabelquerschnitt Recommend cable cross Section de câble recommandée		63 A	40 A	25 mm²
Wassertemperatur max. Water temperature max.		10 mm²	6 mm²	40 °C
Umgebungstemperatur max. Ambient temperature		40 °C	40 °C	60 °C

Peak Strom darf den 3-fachen Nennstrom erreichen
 Peak current is allowed to reach 3 times of the nominal current

Fig. 13.12.3-4: Technische Daten PMGi / Technical data PMGi / PMGi Out

		PMGi 15000 400 V	PMGi 15000 230 V	PMGi 15000 120 V
Nominale Ausgangsspannung Nominal Voltage	NOV _{AC}	400 V VAC +/- 5 % ohne Last / without Load / sans charge	230 V VAC +/- 5 % ohne Last / without Load / sans charge	120 V VAC +/- 5 % ohne Last / without Load / sans charge
Regelung Regulation	R	5 %	5 %	5 %
Stabilität (Kurzzeit (30sec)) Stability (short term (30sec))	D_s	5 %	5 %	5 %
Stabilität (Langzeit (4h)) Stability (Long term (4h))	D _I	5 %	5 %	5 %
Spannungsabweichung Voltage offset Divergence de tension	V _{offset}	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C
Stromstärke Current Courant	Stromstärke _{Nominal} Current _{Nominal} Courant _{Nominal}	3x 17,4 A @ 400 V _{eff.}	52 A @230 V _{eff.}	100 A @120 V _{eff.}
	Stromstärke _{Maximum} Current _{Maximum} Courant _{Maximum}	3x 21,7 A @ cos phi 0,8 @400 V _{eff.}	52 A @ cos phi 0,8 @230 V _{eff.}	100 A @ cos phi 0,8 @120 V _{eff.}
Leistung Power Puissance	Nominal Nominal power Nominale	15 kVA	15 kVA	15 kVA
	Dauer Long term Continue	10,8 kW	12 kW	12 kW
Frequency	Nominale Frequenz Nominal Frequency Fréquence nominale	50 Hz +/-2 %	50 Hz +/-2 % 60 Hz +/-2 %	60 Hz +/-2 %
	Regulierung Regulation Réglage	4 %	4 %	4 %
	Stabilität (Kurzeitig) (30 s)) Stability (short term (30 s)) Stabilité (courte durée (30 s))	3 %	3 %	3 %
	Stabilität (Langzeit (4 h)) Stability (Long term (4 h)) Stabilité (longue durée (4 h))	3 %	3 %	3 %
Krestfaktor ¹⁾ Crestfactor ¹⁾ Facteur de crête		3:1	3:1	3:1
Empfohlene Absicherung Recommend protection Fuse Sécurisation recommandée		3x 25 A	63 A	100 A
Empfohlener Kabelquerschnitt Recommend cable cross Section de câble recommandée		4 mm² (PUR Kabel einsetzen / use PUR cable / Mise en place du câble PUR)	10 mm² (PUR Kabel einsetzen / use PUR cable / Mise en place du câble PUR)	25 mm² (PUR Kabel einsetzen / use PUR cable /)Mise en place du câble PUR
Wassertemperatur max. Water temperature max.			40 °C (nur bei wassergekühlter Version / watercooled version only)	40 °C
Umgebungstemperatur max. Ambient temperature	_	40 °C (nur bei wassergekühlter Version / watercooled version only)	60 °C (nur bei wassergekühlter Version / watercooled version only)	60 °C (nur bei wassergekühlter Version / watercooled version only)

¹⁾ Peak Strom darf den 3-fachen Nennstrom erreichen

¹⁾ Peak current is allowed to reach 3 times of the nominal current

Fig. 13.12.3-5: Technische Daten PMGi / Technical data PMGi / PMGi Out

		PMGi 15000 2x120 V	PMGi 25 230 V	PMGi 25 400 V
Nominale Ausgangsspannung Nominal Voltage	NOV _{AC}	2x 120 V VAC +/- 5 % ohne Last / without Load / sans charge	230 V VAC +/- 5 % ohne Last / without Load / sans charge	400 V VAC +/- 5 % ohne Last / without Load / sans charge
Regelung Regulation	R	5 %	5 %	5 %
Stabilität (Kurzzeit (30sec)) Stability (short term (30sec))	D_S	5 %	5 %	5 %
Stabilität (Langzeit (4h)) Stability (Long term (4h))	D _I	5 %	5 %	5 %
Spannungsabweichung Voltage offset Divergence de tension	V _{offset}	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C
Stromstärke Current Courant	Stromstärke _{Nominal} Current _{Nominal} Courant _{Nominal}	2x 50 A @ 120 V _{eff} . 1x 50 A @ 240 V _{eff}	87 A @230 V	3x29 A @400 V
	Stromstärke _{Maximum} Current _{Maximum} Courant _{Maximum}	2x 62 A @ 120 V _{eff} . 1x 62 A @ 240 V _{eff}	108 A @ cos phi 0,8 @230 V	3x36,2 A @ cos phi 0,8 @400 V
Leistung Power Puissance	Nominal Nominal power Nominale	12 kVA	25 kVA	25 kVA
	Dauer Long term Continue	10,8 kW	18 kW	20 kW
Frequency	Nominale Frequenz Nominal Frequency Fréquence nominale	60 Hz +/-2 %	50 Hz +/-2 %	50 Hz +/-2 % (Alternative 60 Hz +/- 2 % on special order)
	Regulierung Regulation Réglage	4 %	4 %	4 %
	Stabilität (Kurzeitig) (30 s)) Stability (short term (30 s)) Stabilité (courte durée (30 s))	3 %	3 %	3 %
	Stabilität (Langzeit (4 h)) Stability (Long term (4 h)) Stabilité (longue durée (4 h))	3 %	3 %	3 %
Krestfaktor ¹⁾ Crestfactor ¹⁾ Facteur de crête		3:1	3:1	3:1
Empfohlene Absicherung Recommend protection Fuse Sécurisation recommandée		63 A	125 A	40 A
Empfohlener Kabelquerschnitt Recommend cable cross Section de câble recommandée		16 mm² (PUR Kabel einsetzen / use PUR cable / Mise en place du câble PUR)	35 mm ²	6 mm ²
Wassertemperatur max. Water temperature max.		40	40 °C	40 °C
Umgebungstemperatur max. Ambient temperature		60 °C (nur bei wassergekühlter Version / watercooled version only)	60 °C	50 °C

¹⁾ Peak Strom darf den 3-fachen Nennstrom erreichen

¹⁾ Peak current is allowed to reach 3 times of the nominal current

Fig. 13.12.3-6: Technische Daten PMGi / Technical data PMGi / PMGi Out

		PMGi 25 2x120 V/240 V	PMGi 45 230 V	PMGi 45 400 V
Nominale	NOV _{AC}	2x120 V/240 V VAC +/-	230 V VAC +/- 5 % ohne	400 V VAC +/- 5 % ohne
Ausgangsspannung		5 % ohne Last / without	Last / without Load / sans	Last / without Load / sans
Nominal Voltage	_	Load / sans charge	charge	charge
Regelung Regulation	R	5 %	5 %	5 %
Stabilität (Kurzzeit (30sec)) Stability (short term (30sec))	D_s	5 %	5 %	5 %
Stabilität (Langzeit (4h)) Stability (Long term (4h))	D _I	5 %	5 %	5 %
Spannungsabweichung Voltage offset	V _{offset}	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C
Divergence de tension		+-5 V -20 °C à +40 °C	+-5 V -20 °C à +40 °C	+-5 V -20 °C à +40 °C
Stromstärke Current Courant	Stromstärke _{Nominal} Current _{Nominal} Courant _{Nominal}	2x 83,3 A@120 V/ 1x 83,3 A@240 V	156,5 @230 V	3x52 A @400 V
	Stromstärke _{Maximum} Current _{Maximum} Courant _{Maximum}	2x 104,0 A @ cos phi 0,8 @120 V 1x 104,0 A @ cos phi 0,8 @240 V	195,6 A @ cos phi 0,8 @230 V	65 A @ cos phi 0,8 @400 V
Leistung Power Puissance	Nominal Nominal power Nominale	25 kVA	45 kVA	45 kVA
	Dauer Long term Continue	2x 10 kW @120 V 1x 20 kW @240 V	Dauer 36 kW	Nominal 36 kW Dauer 33 kW
Frequency	Nominale Frequenz Nominal Frequency Fréquence nominale	60 Hz +/-2 %6	50 Hz +/-2 % (Alternative 60 Hz +/- 2 % on special order)	50 Hz +/-2 % (Alternative 60 Hz +/- 2 % on special order)
	Regulierung Regulation Réglage	4 %	4 %	4 %
	Stabilität (Kurzeitig) (30 s)) Stability (short term (30 s)) Stabilité (courte durée (30 s))	3 %	3 %	3 %
	Stabilität (Langzeit (4 h)) Stability (Long term (4 h)) Stabilité (longue durée (4 h))	3 %	3 %	3 %
Krestfaktor ¹⁾ Crestfactor ¹⁾ Facteur de crête		3:1	3:1	3:1
Empfohlene Absicherung Recommend protection Fuse Sécurisation recommandée		125 A	200 A	80 A
Empfohlener Kabelquerschnitt Recommend cable cross Section de câble recommandée		50 mm ²	50 mm² (PUR Kabel einsetzen / use PUR cable / Mise en place du câble PUR)	min. 16 mm² (PUR Kabel einsetzen / use PUR cable / Mise en place du câble PUR)
Wassertemperatur max. Water temperature max.		40 °C	40 °C (nur bei wassergekühlter Version / watercooled version only)	40 °C (nur bei wassergekühlter Version / watercooled version only)
Umgebungstemperatur max. Ambient temperature		60 °C	50 °C (nur bei wassergekühlter Version / watercooled version only)	50 °C (nur bei wassergekühlter Version / watercooled version only)

¹⁾ Peak Strom darf den 3-fachen Nennstrom erreichen

¹⁾ Peak current is allowed to reach 3 times of the nominal current

Fig. 13.12.3-7: Technische Daten PMGi / Technical data PMGi / PMGi Out

		PMGi 60 400 V	
Nominale	NOV _{AC}	400 V VAC +/- 5 % ohne	
Ausgangsspannung	7.0	Last / without Load / sans	
Nominal Voltage		charge	
Regelung Regulation	R	5 %	
Stabilität (Kurzzeit (30sec)) Stability (short term (30sec))	D_s	5 %	
Stabilität (Langzeit (4h)) Stability (Long term (4h))	D _I	5 %	
Spannungsabweichung Voltage offset	V _{offset}	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C	
Divergence de tension		+-5 V -20 °C à +40 °C	
Stromstärke	Stromstärke _{Nominal}	3x69,3 A @400 V	
Current Courant	Current _{Nominal} Courant _{Nominal}		
	Stromstärke _{Maximum} Current _{Maximum} Courant _{Maximum}	86,7 A @ cos phi 0,8 @400 V	
Leistung Power	Nominal Nominal power	60 kVA	
Puissance	Nominale		
	Dauer Long term Continue	Nominal 48 kW Dauer 43 kW	
Frequenz	Nominale Frequenz	50 Hz +/-2 %	
Frequency	Nominal Frequency Fréquence nominale	(Alternative 60 Hz +/- 2 % on special order)	
	Regulierung Regulation Réglage	4 %	
	Stabilität (Kurzeitig) (30 s)) Stability (short term (30 s)) Stabilité (courte durée (30 s))	3 %	
	Stabilität (Langzeit (4 h)) Stability (Long term (4 h)) Stabilité (longue durée (4 h))	3 %	
Krestfaktor ¹⁾ Crestfactor ¹⁾ Facteur de crête		3:1	
Empfohlene Absicherung Recommend protection Fuse Sécurisation recommandée		100 A	
Empfohlener Kabelquerschnitt		min. 35 mm² (PUR Kabel einsetzen / use PUR cable	
Recommend cable cross Section de câble recommandée		/ Mise en place du câble PUR)	
Wassertemperatur max. Water temperature max.		40 °C (nur bei wassergekühlter Version / watercooled version only)	
Umgebungstemperatur max. Ambient temperature		50 °C (nur bei wassergekühlter Version / watercooled version only)	

¹⁾ Peak Strom darf den 3-fachen Nennstrom erreichen

¹⁾ Peak current is allowed to reach 3 times of the nominal current

Fig. 13.12.3-8: Überlastung

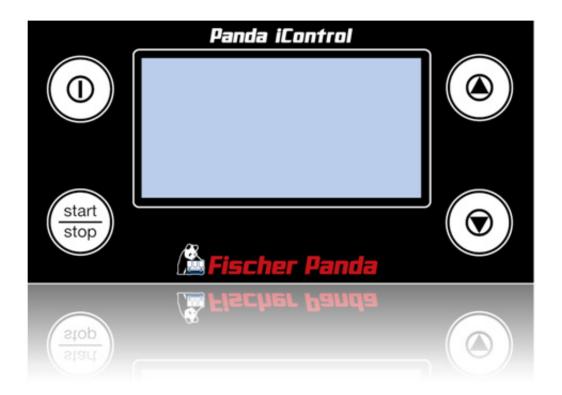
Ausgangsart	Max. Stromstärke	Kommentar
230VAC		Wenn die Sicherheitsschaltung angesprochen hat, muss der Generator ausgeschaltet und alle Verbraucher getrennt werden.

13.12.4 Kurzschluss

Damit die Kurzschluss-Sicherheitsschaltung aktiv sein kann, muss eine Sicherung im stromführenden Kabel eingebaut werden. Spezifikation der Sicherung:

Bewertete Stromstärke	1.2	1.5	2.75	4.0	10.0
135A	>1h	<30min	5ms bis 150ms	2ms bis 15ms	<2ms

Die elektrischen Daten des Systems basieren auf den Daten, die in den "Allgemeinen Daten" beschrieben sind. Setzen Sie das PMGi keinen Temperaturschocks aus. Wichtig!



Leere Seite / Intentionally blank

Seite/Page 142 Kapitel/Chapter 13: Inverter Panda PMGi 27.5.24

Panda iControl2

Bedienungsanleitung

Steuerungs- und Regelungssystem für Fischer Panda Generatoren

Aktueller Revisionsstand

	Dokument
Aktuell:	Panda_xx_PVMV-N_deu.R00_27.5.24
Ersetzt:	Panda_xx_PVMV-N_deu.R06

Revision	Seite
Kontrolltätigkeiten vor dem Start hinzugefügt	
Emergency stop, Fehlerspeicher, Master Slave eingepflegt. Revisionsstand an eng angeglichen R08	

Hardware

Generator	Revision	Modification Strike Plate	Datum	Upgrade

Erstellt durch / created by

Fischer Panda GmbH - Leiter Technische Dokumentation

Otto-Hahn-Str. 32-34

33104 Paderborn - Germany

Tel.: +49 (0) 5254-9202-0

email: info@fischerpanda.de

web: www.fischerpanda.de

Copyright

Vervielfältigung und Änderung des Handbuches ist nur der Erlaubnis und Absprache des Herstellers erlaubt!

Alle Rechte an Text und Bild der vorliegenden Schrift liegen bei Fischer Panda GmbH, 33104 Paderborn. Die Angaben wurden nach bestem Wissen und Gewissen gemacht. Für die Richtigkeit wird jedoch keine Gewähr übernommen. Es wird ausdrücklich darauf hingewiesen, dass technische Änderungen zur Verbesserung des Produktes ohne vorherige Ankündigung vorgenommen werden können. Es muss deshalb vor der Installation sichergestellt werden, dass die Abbildungen, Beziehungen und Zeichnungen zu dem gelieferten Gerät passen. Im Zweifelsfall muss bei der Lieferung nachgefragt werden.

14. Sicherheitshinweise Panda iControl2

14.1 Personal

Die hier beschriebenen Einstellungen können, soweit nicht anders gekennzeichnet, durch den Bediener ausgeführt werden.

Der Einbau sollte nur von speziell ausgebildetem Fachpersonal oder durch Vertragswerkstätten (Fischer Panda Service Points) ausgeführt werden.

14.2 Sicherheitshinweise

Beachten Sie die Sicherheitshinweise im Fischer PandaGenerator Handbuch.

Sollten diese nicht vorliegen, können Sie bei Fischer Panda GmbH 33104 Paderborn angefordert werden.

Durch ein externes Signal kann ein automatischer Start eingeleitet werden.

Der Generator darf nicht mit abgenommener Abdeckhaube in Betrieb genommen werden

Sofern der Generator ohne Schalldämmkapsel montiert werden soll, müssen die rotierenden Teile (Riemenscheibe, Keilriemen etc.) so abgedeckt und geschützt werden, dass eine Verletzungsgefahr ausgeschlossen wird.

Falls vor Ort eine Schalldämmkapsel angefertigt wird, muss durch gut sichtbar angebrachte Schilder darauf hingewiesen werden, dass der Generator nur mit geschlossener Schalldämmkapsel eingeschaltet werden darf.

Alle Service-, Wartungs- oder Reparaturarbeiten am Aggregat dürfen nur bei stehendem Motor vorgenommen werden.

Elektrische Spannung - Lebensgefahr!

Die elektrischen Spannungen von über 48 V sind immer lebensgefährlich. Bei der Installation und Wartung sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten.

Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

Batterie abklemmen bei Arbeiten am Generator

Es muss immer die Batterie abgeklemmt werden (zuerst Minus- dann Pluspol), wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden,

Hinweis!

Warnung! Automatikstart

Warnung!

Warnung! Elektrische Spannung

Achtung!

damit der Generator nicht unbeabsichtigt gestartet werden kann.

Diese gilt besonders bei Systemen mit einer Automatikstart-Funktion. Die Automatikstart-Funktion ist vor Beginn der Arbeiten zu deaktivieren.

Das Seeventil muss geschlossen werden (nur PMS Version).

Beachten Sie auch die Sicherheitshinweise der anderen Hinweis! Komponenten Ihres Systems.

15. Generelle Bedienung

15.1 Das Panda iControl2-Panel

Das Bedienpanel "Panda iControl2-Panel" ist die Bedien- und Anzeigeeinheit der Panda iControl2-Steuerung und stellt die Schnittstelle zwischen dem Bediener und dem Panda iControl2-Steuergerät dar. Auf dem integrierten Anzeigedisplay werden neben wichtigen Daten des Systems auch Warnungen und Fehlermeldungen dargestellt.

Für die Bedienung der Panda iControl2-Steuerung stehen auf dem Bedienpanel vier Taster zur Verfügung:

Fig. 15.1-1: Panda iControl 2 Panel

- 1. On-Off-Taste: Ein- und Ausschalten der Panda iControl2-Steuerung
- 2. Start-/Stop-Taste: Starten und Stoppen des Generators, Bestätigen von Werten in Auswahlmenüs (Enter Taste)
- 3. Cursor-Up-Taste: Umschalten von Displayseiten (aufwärts), Werte in Auswahlmenüs hochzählen
- 4. Cursor-Down-Taste: Umschalten von Displayseiten (abwärts), Werte in Auswahlmenüs runterzählen.

Für weitere Informationen siehe das Fernbedienpanel Datenblatt/Handbuch!

Hinweis!

15.2 Startvorbereitungen / Kontrolltätigkeiten (täglich)

15.2.1 Marine Version

1. Ölstandskontrolle (Sollwert 2/3 Max.).

Der Füllstand sollte bei kaltem Motor etwa 2/3 des Maximums betragen.

Desweitern, wenn vorhanden, muss vor jedem Start der Ölstand des ölgekühlten Lagers kontrolliert werden - siehe Schauglas am Generator-Stirndeckel!

2. Kontrolle Kühlwasserstand.

Das externe Ausgleichsgefäß sollte im kaltem Zustand 1/3 gefüllt sein. Es ist wichtig, dass genügend Platz zum Ausdehnen vorhanden ist.

3. Prüfen, ob Seeventil geöffnet ist.

Nach dem Abschalten des Generators muss aus Sicherheitsgründen das Seeventil geschlossen werden. Es ist vor dem Start des Generators wieder zu öffnen.

4. Seewasserfilter prüfen.

Der Seewasserfilter muss regelmäßig kontrolliert und gereinigt werden. Wenn durch abgesetzte Rückstände die Seewasserzufuhr beeinträchtigt wird, erhöht dies den Impellerverschleiß.

5. Sichtprüfung

Befestigungsschrauben kontrollieren, Schlauchverbindungen auf Undichtigkeiten überprüfen, elektrische Anschlüsse kontrollieren. Elektrische Leitungen auf Beschädigungen/Scheuerstellen kontrollieren.

6. Schalten Sie die Verbraucher ab.

Der Generator sollte ohne Last gestartet werden.

- 7. Gegebenenfalls Kraftstoffventil öffnen.
- 8. Gegebenenfalls Batteriehauptschalter schließen (einschalten).

15.2.2 Fahrzeug Version

1. Ölstandskontrolle (Sollwert 2/3 Max.).

Der Füllstand sollte bei kaltem Motor etwa 2/3 des Maximums betragen.

Desweitern, wenn vorhanden, muss vor jedem Start der Ölstand des ölgekühlten Lagers kontrolliert werden - siehe Schauglas am Generator-Stirndeckel!

2. Kontrolle Kühlwasserstand.

Das externe Ausgleichsgefäß sollte im kaltem Zustand 1/3 gefüllt sein. Es ist wichtig, dass genügend Platz zum Ausdehnen vorhanden ist.

3. Sichtprüfung

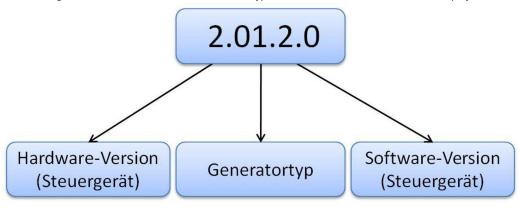
Befestigungsschrauben kontrollieren, Schlauchverbindungen auf Undichtigkeiten überprüfen, elektrische Anschlüsse kontrollieren. Elektrische Leitungen auf Beschädigungen/Scheuerstellen kontrollieren.

4. Schalten Sie die Verbraucher ab.

Der Generator sollte ohne Last gestartet werden.

- 5. Gegebenenfalls Kraftstoffventil öffnen.
- Gegebenenfalls Batteriehauptschalter schließen (einschalten).

15.3 Bedienung


15.3.1 Ein- und Ausschalten der Steuerung

Durch Betätigung der On-/Off-Taste am Panda iControl2-Panel schalten Sie die Panda iControl2-Steuerung ein. Halten Sie bitte die On-/Off-Taste gedrückt, bis die Startseite mit dem Pandabären auf dem Display angezeigt wird. Durch eine erneute Betätigung der On-/Off-Taste schalten Sie die Steuerung wieder aus.

Auf der Startseite werden unten links die Hardware-Version, der Generatortyp, die Software-Version ausgegeben.

Fig. 15.3.1-2: Hardware-Version, Generatortyp und Software-Version im Standard-Display

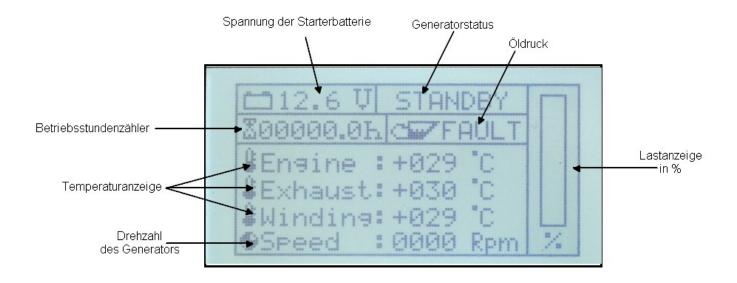
Beispiel: Hinweis!

Hardware-Version:2 à iControl2-Steuergerät

Generatortyp: 01 à Panda 5000i PMS

Software-Version 2.0 à iControl2, kompatibel mit iControl-Panel2

Fünf Sekunden nach dem Einschalten der Steuerung wechselt die Anzeige auf die Standard-Displayseite. Auf der Standard-Displayseite werden Sie über die Batteriespannung, die Betriebsstunden des Generators, die Temperaturen von Zylinderkopf, Auspuffkrümmer und Wicklung, die Drehzahl und den Status des Öldrucks informiert. Außerdem stellt eine Balkenanzeige am rechten Rand des Displays die prozentuale Auslastung des Generators dar.


Ausgaben auf der Standard-Displayseite:

- Batteriespannung (Versorgungsspannung)
- Statusfeld f
 ür die Betriebsmodi (Standby, Preheat, Starting, Override, Running, Autostart, Stopping)
- · Betriebsstunden des Generators

- Öldruckstatus
- · Zylinderkopftemperatur
- Temperatur des Auspuffkrümmers
- Wicklungstemperatur
- Drehzahl
- Prozentuale Auslastung

Fig. 15.3.2-1: Standard Displayseite

Das Display zeigt die iControl Board Eingangsspannung an. Hinweis!

Bei Generatorsystemen mit 12 V Start System ist dieses gleich der Spannung der Starterbatterie.

Bei Generatorsystemen mit 24 V Start System kann die Spannung der Starterbatterie nicht angezeit werden.

15.3.3 Betriebsmodi

Die Panda iControl2-Steuerung bietet verschiedene Betriebsmodi an.

15.3.3.1 Standby-Modus

Nach dem Einschalten der Steuerung über die On-/Off-Taste befindet sich das System im Standby-Modus. Das erkennt man an der Ausgabe "STANDBY" im Statusfeld oben rechts auf der Standard-Displayseite. Aus dieser Betriebsart ist das Ausschalten des Systems über die On-/Off-Taste und das Starten des Generators über die Start-/ Stop-Taste möglich. Über die Cursor-Tasten erreicht man die Service-Info-Seite.

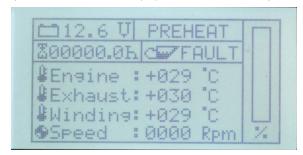
Fig. 15.3.3.1-1: Service-Info-Seite

Die Gesamtbetriebsstunden des Generators werden auf der Standard-Displayseite und auf der Service-Info-Seite ausgegeben. Durch Betätigen der Cursor-Up- oder Cursor-Down-Taste im Standby-Modus gelangt man auf die Service-Seite. Diese Seite ist mit einem Schraubenschlüssel-/Schraubendreher-Symbol gekennzeichnet. Hier wird über die Zeit bis zum nächsten Service informiert. Durch wiederholtes Betätigen der Cursor-Up- oder Cursor-Down-Taste gelangen Sie zurück auf die Standard-Seite.

Im Setup-Menü der Steuerung haben Sie die Möglichkeit, nach einer Wartung das Service-Intervall zurückzusetzen. Siehe "Setup-Menü" auf Seite 156.

Durch die variable Betriebsstundenanzeige können die Serviceintervalle um bis zu 30 % (auf max. 200 h) verlängert werden. Es ist sicherzustellen, dass die variable Betriebsstundenanzeige zwischen den Intervallen nicht unabsichtlich zurückgesetzt wird. Siehe "Service-Intervall zurücksetzen ("Service")" auf Seite 160.

15.3.3.2 Start-Modus


Der Start-Modus ist der Übergang vom Standby-Modus in den Operation-Modus, also den Generatorbetrieb. Durch Betätigung der Start-/Stop-Taste im Standby-Modus leiten Sie den Startvorgang des Generators ein.

Zunächst erfolgt das Vorglühen. Dabei wird im Statusfeld oben rechts auf der Standard-Displayseite "PREHEAT" ausgegeben.

Das Vorglühen erfolgt immer für eine Zeitdauer von 10 Sekunden, unabhängig von der Zylinderkopftemperatur.

Bei Temperaturen unter 0 $^{\circ}$ C wird immer für 40 Sekunden vorgeglüht.

Fig. 15.3.3.2-1: Standard-Displayseite während des Vorglühens

Nach dem Vorglühen erfolgt das Einschalten des Anlassers, begleitet durch die Ausgabe "STARTING" im Statusfeld der Standard-Displayseite.

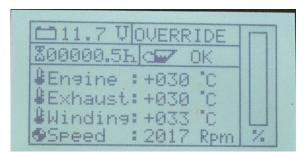
Fig. 15.3.3.2-2: Standard-Displayseite während des Startens

Die Steuerung führt nur einen Startversuch durch. Konnte der Generator nicht gestartet werden, werden Sie durch die Ausgabe "STARTING FAILS" über das Fehlschlagen des Generatorstarts informiert. Hinweis!

Durch Quittierung der Meldung mit der Cursor-Up-, Cursor-Down- oder Start-/Stop-Taste am Panda iControl2-Panel gelangen Sie zurück in den Standby-Modus.

Seeventil zudrehen im Falle von Startschwierigkeiten. (Nur Panda Marine Generatoren)

Achtung!


Wenn der Generator-Motor nach dem Betätigen der "Start"-Taste nicht sofort anspringt und weitere Startversuche erforderlich sind (z.B. zum Entlüften der Kraftstoffleitungen usw.) muss während der Startversuche unbedingt das Seeventil geschlossen werden. Während des Startvorganges dreht sich die Kühlwasser-Impellerpumpe mit und fördert Kühlwasser. Solange der Motor nicht angesprungen ist, reicht der Abgasdruck nicht aus, um das eingebrachte Kühlwasser wegzubefördern. Durch diesen länger andauernden Startvorgang würde sich Abgassystem mit Kühlwasser füllen. Dieses kann den Generator/Motor schädigen/zerstören.

Öffnen Sie das Seeventil wieder, sobald der Generator gestartet hat.

15.3.3.3 Override-Modus

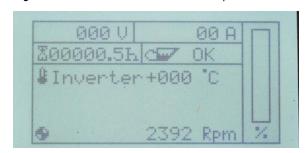
Direkt an den erfolgreichen Start des Generators schließt sich der Override-Modus an. In diesem Modus findet keine Fehlerbetrachtung statt. Die Zeitdauer des Override-Modus beträgt 10 Sekunden. Die Statusanzeige auf dem Display zeigt "OVERRIDE".

Fig. 15.3.3.3-1: Standard-Displayseite während des Override-Modus

15.3.3.4 Operation-Modus

Als Operation-Modus wird die Betriebsart bezeichnet, in welcher der Generator in Betrieb ist und alle Betriebsdaten im normalen Bereich liegen. Im Statusfeld der Standard-Displayseite wird "RUNNING" ausgegeben.

Im Operation-Modus wird die elektrische Last als Balkenanzeige rechts auf der Standard-Displayseite und auf der Inverter-Seite dargestellt. Die Balkenanzeige stellt nur einen Hinweis für die Belastung des Generators dar und wird in Prozent ausgegeben.


Fig. 15.3.3.4-1: Standard-Displayseite während des Operations-Modus

Displayseite für 1-phasige Generatoren

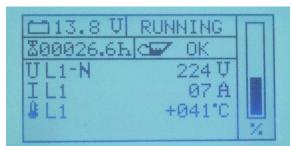
Bei den 1-phasigen Generatoren der i-Serie gibt es im Operation-Modus eine weitere Seite für die Daten des Inverters. Auf dieser Seite sehen Sie die aktuelle Inverter-Ausgangsspannung und die Inverter-Temperatur. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Fig. 15.3.3.4-2: Inverterseite während des Operation-Modus

Displayseiten für 3-phasige Generatoren

Bei den 3-phasigen Generatoren der i-Serie gibt es im Operations-Modus 5 weitere Seite für die Daten des Inverters. Auf dieser Seite sehen Sie die aktuellen Inverter-Strangspannungen und die Leiterströme. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Fig. 15.3.3.4-3: Inverterseite Strangspannungen und Leiterströme



Auf dieser Seite sehen Sie die aktuelle Inverter-Außenleiterspannungen. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Fig. 15.3.3.4-4: Inverterseite Außenleiterspannungen

Fig. 15.3.3.4-5: Phasenspannung L1

Auf dieser Seite sehen Sie die aktuelle Inverter-Ausgangsspannung der einzelnen Phase mit dem dazugehörigen Leiterstrom und die Platinen-Temperatur. Bei einer Platinen-Temperatur von 75 °C erfolgt eine Abschaltung des Inverters. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Auf dieser Seite sehen Sie die aktuelle Inverter-Ausgangsspannung der einzelnen Phase mit dem dazugehörigen Leiterstrom und die Platinen-Temperatur. Bei einer Platinen-Temperatur von 75 °C erfolgt eine Abschaltung des Inverters. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Auf dieser Seite sehen Sie die aktuelle Inverter-Ausgangsspannung der einzelnen Phase mit dem dazugehörigen Leiterstrom und die Platinen-Temperatur. Bei einer Platinen-Temperatur von 75 °C erfolgt eine Abschaltung des Inverters. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Fig. 15.3.3.4-6: Phasenspannung L2

Fig. 15.3.3.4-7: Phasenspannung L3

15.3.3.5 Panda i-Generator mit elektro-magnetischer Kupplung (optional)

Während die elektro-magnetische Kupplung aktiviert ist, wird Achtung!: der Generator durch das iControl auf maximaler Drehzahl betrieben.

Nach dem Lösen der Kupplung fällt der Generator auf normale Drehzahl zurück.

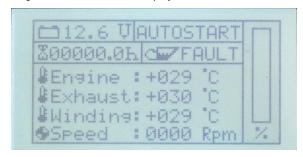
15.3.3.6 **Stopp-Modus**

Durch Betätigung der Start-/Stop-Taste im Operations-Modus, also bei laufendem Generator, stoppen Sie den Generator. Nach dem Stoppen des Generators geht das System wieder in den Standby-Modus zurück. Das Statusfeld des Displays zeigt "STOPPING".

Wird der Generator im Automatik-Start-Modus manuell gestartet und gestoppt, fällt er aus Sicherheitsgründen in den Standby-Modus zurück.

Bei Bedarf muss der Autostart-Modus erneut aktiviert werden.

Hinweis! Manueller Start im Autostart-Modus


15.3.3.7 Autostart-Modus

Das Panda iControl2-Panel besitzt eine Autostartfunktion. Eine Brücke zwischen Pin 6 (UBAT) und Pin 7 (USTART) der Phoenix-Buchse des Bedienpanels startet den Generator bei aktivierter Autostartfunktion nach einer Verzögerung von 5 Sekunden. Das Entfernen der Brücke stoppt den Generator – ebenfalls nach einer Verzögerung von 5 Sekunden.

Um die Autostart-Funktion zu aktivieren, müssen Sie zunächst im Setup-Menü das "Autostart-Flag" setzen. Wie Sie die Autostartfunktion aktivieren, lesen Sie im Kapitel 15.4.6, "Aktivieren/Deaktivieren der Autostartfunktion ("Autostart")," auf Seite 158.

Im Statusfeld des Displays erkennen Sie an der Ausgabe "AUTOSTART", dass die Autostartfunktion aktiv ist, bzw. an der Ausgabe von "STANDBY", dass die Autostartfunktion deaktiviert ist:

Fig. 15.3.3.7-1: Standard-Displayseite im Autostart-Modus

Die Autostartfunktion bleibt auch nach dem Aus- und Wiedereinschalten der Steuerung über die On-/Off-Taste aktiv. Zur Deaktivierung der Autostartfunktion muss das Flag im EEPROM über "Disable" zurückgesetzt werden. Siehe "Aktivieren/Deaktivieren der Autostartfunktion ("Autostart")" auf Seite 158.

Wird der Generator im Automatik-Start-.Modus manuell gestartet und gestoppt, fällt er aus Sicherheitsgründen in den Standby-Modus zurück.

Bei Bedarf muss der Autostart-Modus erneut aktiviert werden

Warnung! Automatikstart

Hinweis! Manueller Start im Autostart-Modus

15.4 Weiterführende Bedienung

15.4.1 Setup-Menü

Im Setup-Menü kann eine Reihe von Parametern direkt über das Bedienpanel verändert werden. Um in das Setup-Menü zu gelangen, müssen Sie direkt nach dem Einschalten der Steuerung über die On-/Off-Taste und noch während der Ausgabe der Startseite mit dem Panda-Bären die Taste "Cursor down" betätigen. Sie sehen nun ein Menü mit den folgenden Unterpunkten:

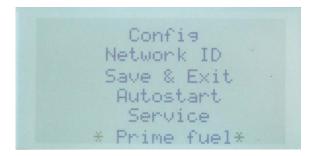
Menüpunkt	Einstellbereich für
backlight 1	Einstellung des Helligkeitswertes für die Standard-Hintergrundbeleuchtung 0-9
backlight 2	Einstellung des Helligkeitswertes für die gedimmte Hintergrundbeleuchtung 0-9
Dimtime	Zeit, bis das Display in den gedimmten Zustand wechselt 0-255s 0=Funktion deaktiviert
Config	Passwortgeschützer Bereich für Fischer Panda Mitarbeiter und Fischer Panda Service points
Network ID	Einstellung der Netzwerk ID des Panels
Save & Exit	Speichern der Werte und Verlassen des Setup Menüs
Autostart	Aktivieren und Deaktivieren der Automatikstart-Funktion
Service	Rückstellung der "Betriebsstunden bis Service" Anzeige
Prime fuel	Aktivierung der Kraftstoffpumpe zum Entlüften des Generator-Kraftstoffsystems
Degree C/F	Umstellung der Anzeige °C zu °F

Über die Tasten "Cursor-Up" und "Cursor-Down" können Sie durch das Menü wandern. Der aktuell selektierte Menüpunkt ist durch zwei *-Symbole markiert, z. B "backlight 2":

Setup Menü mit markiertem * backlight 2 *

Backlight 1
Backlight 2
Dimtime
Config
Network ID
Save & Exit

Fig. 15.4.1-1: Setup-Menü


Die Start-/Stop-Taste wird im Setup-Menü zur Bestätigung verwendet. Wenn Sie die durch * markierte Zeile mit der Start-/Stop-Taste bestätigen, erreichen Sie das ausgewählte Untermenü.

Setup-Menü

Hinweis!

Fig. 15.4.1-2: Setup-Menü

15.4.2 Einstellen der Helligkeit der Hintergrundbeleuchtung ("backlight" und "dimtime")

Die Helligkeit der Display-Hintergrundbeleuchtung des Panda iControl2-Panels kann in zehn Stufen (0 - 9) variiert werden. Außerdem kann das Display zeitgesteuert gedimmt werden, wenn über eine parametrierbare Zeitdauer keine Taste am Bedienpanel betätigt wird. Für die Einstellung der Standard-Helligkeit und der gedimmten Helligkeit stehen im Setup-Menü die Punkte "backlight 1" (Standard-Helligkeit) und "backlight 2" (gedimmte Helligkeit) zur Verfügung. Diese Seiten im Service-Menü sind durch das Glühlampensymbol gekennzeichnet:

Die Zeitdauer, nach der die Hintergrundbeleuchtung auf den gedimmten Wert geschaltet werden soll, kann über den Menüpunkt "dimtime" vorgegeben werden. Auf dieser Seite können Sie die Zeit in Sekunden eingeben, dabei sind Werte von 0 s bis 255 s möglich.

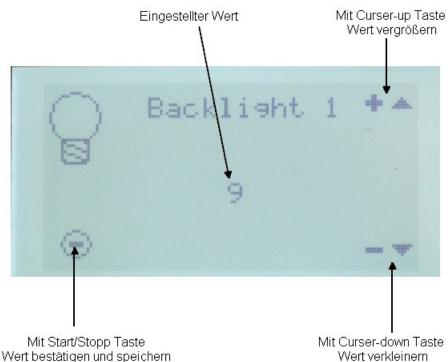


Fig. 15.4.2-1: Display Hintergrundbeleuchtung

Stellen Sie in den Untermenüs jeweils die gewünschten Hinweis! Werte über die Cursor-Tasten ein und bestätigen Sie anschließend ihre Einstellung über die Start-/Stop-Taste.

Wenn Sie alle Parameter eingestellt haben, können Sie das Setup-Menü über den Menüpunkt "Save & Exit" verlassen. Dabei werden alle Einstellungen, die in den Untermenüs backlight 1, backlight 2, dimtime und Network ID vorgenommen wurden, im EEPROM gespeichert. Anschließend wird für 3 Sekunden die Verabschiedungsseite eingeblendet und die Steuerung ausgeschaltet.

Beim nächsten Start der Steuerung werden die Änderungen wirksam.

15.4.3 Das Konfigurationsmenü ("config")

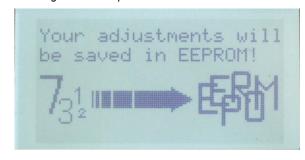
Einstellungen in diesem Bereich dürfen nur von Fischer STOPP! Panda Mitarbeitern und Fischer Panda Service Points vorgenommen werden.

Das Untermenü "config" ist ein passwortgeschützter Bereich, in dem der Generatortyp ausgewählt werden kann und Generatorparameter im EEPROM verändert werden können.

15.4.4 Die Network ID

Einstellungen in diesem Bereich dürfen nur von Fischer Panda Mitarbeitern und Fischer Panda Service Points vorgenommen werden.

STOPP! Network ID darf nicht geändert werden.


Änderung der Network ID kann zu Fehlfunktionen führen.

15.4.5 Einstellungen speichern und Setup-Menü verlassen ("Save & Exit")

Wenn Sie alle Parameter eingestellt haben, können Sie das Setup-Menü über den Menüpunkt "Save & Exit" verlassen.

Dabei werden alle Einstellungen, die in den Untermenüs backlight 1, backlight 2, dimtime und Network ID vorgenommen wurden, im EEPROM gespeichert.

Fig. 15.4.5-1: Speichern der Werte im EEPROM

Anschließend wird für 3 Sekunden die Verabschiedungsseite eingeblendet und die Steuerung ausgeschaltet. Beim nächsten Start der Steuerung werden die Änderungen wirksam.

15.4.6 Aktivieren/Deaktivieren der Autostartfunktion ("Autostart")

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Bei aktivierter Automatikstart-Funktion kann der Generator selbsttätig starten. Vor dem Aktivieren ist sicherzustellen, das die Generatorkapsel geschlossen ist und die entsprechende Warnschilder am Generator angebracht sind. Warnung! Automatikstart

Um die Autostart-Funktion zu aktivieren, wählen Sie im Setup-Menü über die Cursor-Tasten die Zeile "Autostart" aus und bestätigen Sie anschließend über die Start-/ Stop-Taste.

Fig. 15.4.6-1: Setup-Menü

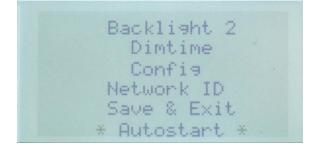
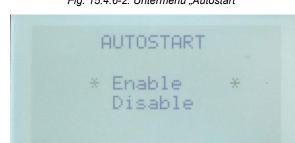
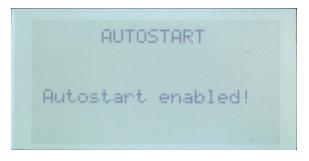



Fig. 15.4.6-2: Untermenü "Autostart"

Im Untermenü "Autostart" können Sie nun über die Cursor-Tasten zwischen den Optionen "Enable" und "Disable" wählen:


Wählen Sie bitte zur Aktivierung der Autostartfunktion "Enable" aus und bestätigen Sie wiederum mit der Start-/ Stop-Taste.

Zur Deaktivierung steht der Menüpunkt "Disable" zur Verfügung.

Panda iControl bestätigt nun Ihre Eingabe:

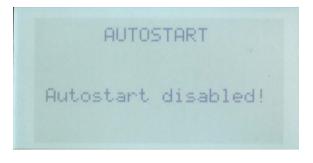

Meldung "Autostart enabled "nach der Bestätigung der Auswahl.

Fig. 15.4.6-3: Meldung "Autostart enabled" nach der Bestätigung der Auswahl

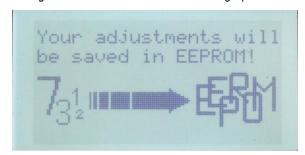

Meldung "Autostart disabled" nach der Bestätigung der Auswahl.

Fig. 15.4.6-4: Meldung "Autostart disabled" nach der Bestätigung der Auswahl

Die Aktivierung/Deaktivierung der Autostartfunktion wird nun im EEPROM des Bedienpanels gespeichert.

Fig. 15.4.6-5: Auswahl wird im EEPROM gespeichert

Anschließend wird die Steuerung ausgeschaltet.

Fig. 15.4.6-6: Verabschiedungsseite vor dem Ausschalten

Nach dem Wiedereinschalten der Steuerung sehen Sie im Statusfeld des Displays an der Ausgabe "AUTOSTART", dass die Autostartfunktion aktiv ist bzw. an der Ausgabe von "STANDBY", dass die Autostartfunktion deaktiviert wurde:

Fig. 15.4.6-7: Standard-Displayseite im Autostart-Modus

Die Autostartfunktion bleibt auch nach dem Aus- und Wiedereinschalten der Steuerung über die On-/Off-Taste aktiv. Zur Deaktivierung der Autostartfunktion muss das Flag im EEPROM wie oben beschrieben über "Disable" zurückgesetzt werden.

.Warnung! Automatikstart

Die Autostartfunktion von Panda iControl2 ist nun bereit. Sie können auch bei aktiver Autostartfunktion jederzeit den Generator manuell über die Start-/Stopp-Taste starten und stoppen.

Wird der Generator im Automatik-Start-Modus manuell gestartet und gestoppt, fällt er aus Sicherheitsgründen in den Standby-Modus zurück.

Hinweis! Manueller Start im Autostart-Modus

Bei Bedarf muss der Autostart-Modus erneut aktiviert werden.

15.4.7 Service-Intervall zurücksetzen ("Service")

Da die Anzeige der verbleibenden Betriebsstunden bis zum nächsten Serviceintervall jederzeit zurückgesetzt werden kann, dient sie nur der Orientierung. Die Serviceintervalle sind anhand der realen Betriebsstunden auszuführen und im Servicelog des Generators ordnungsgemäß zu dokumentieren. Hinweis!

Durch die variable Betriebsstundenanzeige können die Serviceintervalle um bis zu 30 % (auf max. 200 h) verlängert werden. Es ist sicherzustellen, dass die variable Betriebsstundenanzeige zwischen den Intervallen nicht unabsichtlich zurückgesetzt wird.

Hinweis!

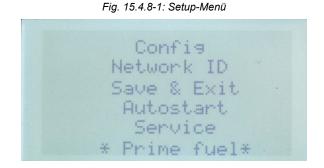
Wählen Sie im Setup-Menü den Menüpunkt "Service" und bestätigen Sie wie gewohnt über die Start-/ Stop-Taste. Sie sehen nun die bereits bekannte Seite mit den Service-Informationen, erweitert um die Anweisung die Start-Stop-Taste zu betätigen, um das Service-Intervall zurückzusetzten.

Zurücksetzen der Zeit bis zur nächsten Wartung

Durch eine erneute Betätigung der Start-Stop-Taste setzen Sie das Service-Intervall auf das Ausgangsintervall zurück. Das Service-Intervall ist für jeden Generatortyp in der Software hinterlegt.

Nach dem Zurücksetzen des Service-Intervalls wird die Steuerung ausgeschaltet. Beim Neustart erscheint die Anzeige des neuen Wertes auf der Service-Seite.

Fig. 15.4.7-1: Zurücksetzen der Zeit bis zur nächsten Wartung


15.4.8 Entlüften des Kraftstoffsystems ("Prime Fuel")

Um das Kraftstoffsystem zu entlüften, bietet Panda iControl2 die Möglichkeit, die Kraftstoffpumpe separat einzuschalten. Wählen Sie im Setup-Menü den Menüpunkt "Prime fuel" und bestätigen Sie Ihre Auswahl über die Start-/Stop-Taste.

Eine erneute Betätigung der Start-/Stop-Taste schaltet die Kraftstoffpumpe für eine Zeitdauer von maximal 30 Sekunden ein. Danach wird die Kraftstoffpumpe selbsttätig wieder ausgeschaltet.

Selbstverständlich können Sie die Kraftstoffpumpe auch manuell wieder ausschalten.

Bestätigen Sie dazu bitte erneut den Menüpunkt "Prime Fuel" und schalten Sie dann die Kraftstoffpumpe über die Start-/ Stop-Taste wieder aus.

15.4.9 Einheit für die Ausgabe der Temperaturwerte auswählen und speichern

Beim Panda iControl2-Panel haben Sie die Möglichkeit, die Temperaturwerte auf dem Display, in Grad-Celsius [°C] oder in Grad-Fahrenheit [°F] anzuzeigen. Die Umstellung erfolgt über das Bedienpanel. Wählen Sie im Setup-Menü den Menüpunkt "Degree C/F" und bestätigen Sie Ihre Auswahl über die Start-/Stop-Taste.

Wählen Sie über die Cursor-Tasten die ,0' für die Ausgabe aller Temperaturen in Grad-Celsius [°C] oder die ,1' für die Darstellung in Grad-Fahrenheit [°F]. Um Ihre Auswahl zu bestätigen, betätigen Sie bitte anschließend die Start-Stop-Taste.

Sie können nun weitere Einstellungen im Setup-Menü durchführen oder das Setup-Menü über "Save & Exit" wieder verlassen. Ihre Auswahl wird dann im EEPROM des Panda iControl2-Panels gespeichert.

Nach dem Wiedereinschalten über die On-Off-Taste wird Ihre Einstellung wirksam und alle Temperaturen werden in der gewählten Einheit ausgegeben.

Einstellmöglichkeiten:

0 Ausgabe aller Temperaturen in Grad-Celsius [°C]

1 Ausgabe aller Temperaturen in Grad-Fahrenheit [°F]

15.5 iControl2-Not-Stop

Die iControl2-Steuerung ist für den Einsatz eines Not-Stop-Schalters vorbereitet. Der Stecker für den Notstopp (1X1, optional emergency off) befindet sich im Kabelbaum. Hier muss die Brücke entfernt werden und der Notstopp-Schalter angeschlossen werden.

Nach dem Entfernen der Brücke/einer Betätigung des Not-Stop-Schalters wird der Servo-Motor in die

Leerlaufposition gefahren und alle Ausgänge des Panda iControl2-Steuergerätes ausgeschaltet.

Damit wird auch die Spannungsversorgung für den Inverter ausgeschaltet.

Das Panel zeigt nach der Betätigung "EMERGENCY STOP!". Diese Meldung wird zurückgesetzt, wenn die Brücke wieder gesetzt/der Not-Stop-Schalter wieder zurückgesetzt wird.

Fig. 15.5-2: Panel Anzeige Not Stopp

Seite/Page 162 Kapitel/Chapter 15: Generelle Bedienung 27.5.24

16. Installation

Alle Anschlussleitungen und Anweisungen für den Einbau sind für "Standard"-Einbausituationen ausgelegt und ausreichend.

Da Fischer Panda die genaue Einbau- und Betriebssituation (z. B. besondere Fahrzeugformen, hohe Fahrgeschwindigkeiten und besondere Einsatzbedingungen o. ä.) nicht bekannt sind, kann diese Installationsvorschrift als Vorlage und Beispiel dienen. Die Installation muss von

und ausgeführt werden. Schäden durch eine falsche, nicht angepasste Installation/

einem entsprechenden Fachmann nach den örtlichen Begebenheiten und Vorschriften entsprechend angepasst

Einbau sind nicht durch die Garantie abgedeckt.

Achtung! System richtig auslegen.

16.1 Personal

Die hier beschriebene Installation darf nur von speziell ausgebildetem Fachpersonal oder durch Vertragswerkstätten (Fischer Panda Service Points) ausgeführt werden.

16.1.1 Gefahrenhinweise für die Installation

Beachten Sie die allgemeinen Sicherheitshinweise am Anfang dieses Handbuches.

Hinweis!

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Es muss immer die Batteriebank abgeklemmt werden (zuerst Minuspol dann Pluspol), wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

.Warnung! Automatikstart

Unsachgemäße Installation kann zu schweren Personen- Warnung! Verletzungsgefahr oder Sachschäden führen. Deshalb:

- · Installationsarbeiten nur bei abgestelltem Motor vornehmen.
- · Vor Beginn der Arbeiten für ausreichende Montagefreiheit sorgen.
- auf Ordnung und Sauberkeit am Arbeitsplatz achten! Lose aufeinander- oder umherliegende Bauteile und Werkzeuge sind Unfallquellen.
- Installationsarbeiten nur mit handelsüblichem Werkzeug und Spezialwerkzeug durchführen. Falsches oder beschädigtes Werkzeug kann zu Verletzungen führen.

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Die elektrischen Spannungen von über 48 V sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

Generator und Kühlwasser können bei und nach dem Betrieb heiß sein. Verbrennungsgefahr/ Verbrühungsgefahr!

Durch den Betrieb kann sich im Kühlsystem ein Überdruck bilden.

Bei Installationsarbeiten ist persönliche Schutzausrüstung zu tragen. Hierzu gehört:

- · Eng anliegende Schutzkleidung
- Sicherheitsschuhe
- · Sicherheitshandschuhe
- Gehörschutz
- · ggf. Schutzbrille

Um Schäden an den Geräten zu vermeiden, sind bei Arbeiten am Generator immer alle Verbraucher abzuschalten.

Warnung! Elektrische Spannung

Warnung! Heiße Oberfläche/Material

Gebot! Schutzausrüstung erforderlich

Achtung! Alle Verbraucher abschalten

16.2 Entsorgung der Komponenten

Elektronikkomponenten sind schädlich für die Umwelt. und beinhalten seltene Rohstoffe.

Ausgediente Komponenten sammeln und fachgerecht entsorgen!

Gebot! Der Umwelt zu liebe

Das iControl2 Board ist in der Regel am Generator vormontiert und entsprechende Anschlussleitungen für die Verbindung mit dem iControl2 Panel und dem PMGi vorbereitet. Siehe Generatorhandbuch.

16.2.1 Panda iControl2-Panel mit Einbaugehäuse

Fig. 16.2.1-1: Panda iControl2-Panel mit Panel-Anschlusskabel und geschlossenem Gehäuse

16.2.2 Klemmenbelegungen am Panda iControl2-Panel

Der Anschluss des Panda iControl2-Panels erfolgt über eine 7-polige Phoenix-Buchse.

Fig. 16.2.2-1: Klemmenbelegung Panda iControl2-Panel

Klemme	Klemmenbezeichnung	Kabelfarbe	Funktion
1	UBUS	Weiss (WH)	Bus-Versorgungsspannung
2	GND	Braun (BN) + Schirm	Masse Fischer Panda-Bus, Masseverbindung zwischen Panda iController und Panda iControl-Panel
3	REIZ	Grün (GN)	Reizleitung, wird gegen Masse gezogen, wenn das Steuergerät einschalten soll.
4	DATA-A	Pink (PK)	Fischer Panda-Bus Datenleitung A
5	DATA-B	Grau (GY)	Fischer Panda-Bus Datenleitung B
6	UBATT		Autostart ^a
7	USTART/STOPP		Autostart ^b

a. Eine Brücke zwischen Klemme 6 und 7 schließt den Autostart-Kontakt.

Verwenden Sie nur original Fischer Panda Anschlusskabel.

Hinweis!

b. Eine Brücke zwischen Klemme 6 und 7 schließt den Autostart-Kontakt.

16.3 Abmessungen

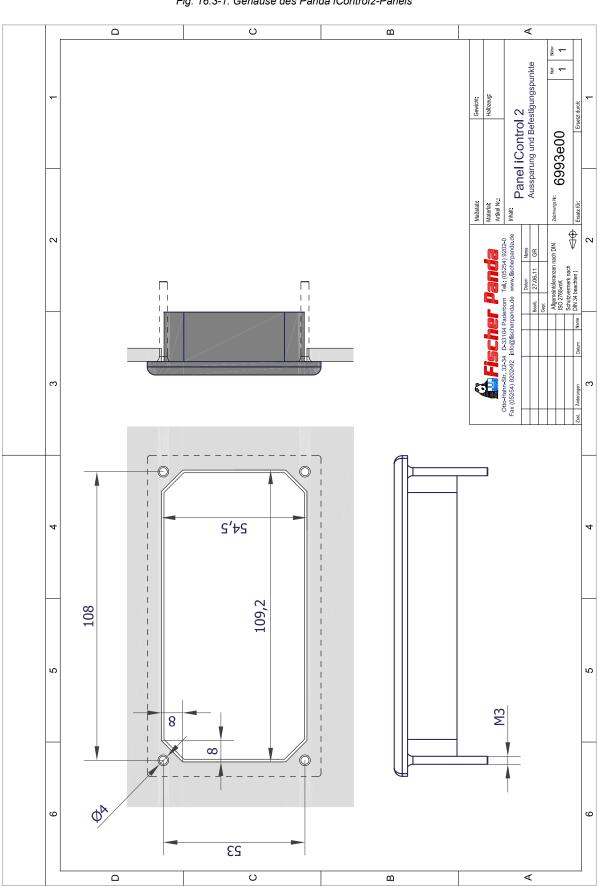


Fig. 16.3-1: Gehäuse des Panda iControl2-Panels

Aufgrund der offenliegenden Anschlussklemmen hat das icontrol2 Panel eine Schutzklasse von IP 04.

Hinweis!

Bei sachgemäßen Einbau mit einer Dichtung (z.B. Sikaflex) kann bis zu IP66 erreicht werden.

16.4 Beschaltung des Panda iControl2-Steuergerätes

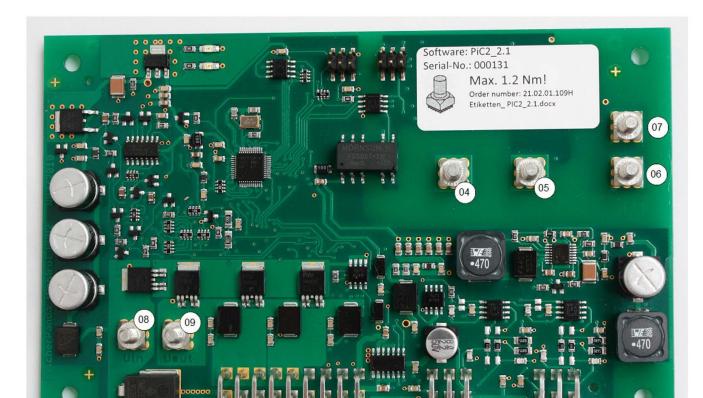


Fig. 16.4-1: Beschaltung des Panda iControl2-Steuergerätes

Das Panda iControl2-Steuergerät wird über die 18-polige Buchse mit dem Kabelbaum verbunden. Die mittlere 6-polige Buchse ist für den Fischer Panda Standard-Bus bestimmt. An diese Buchse wird das Panda iControl2-Panel angeschlossen. Der Fischer Panda CAN-Bus liegt auf der 6-poligen Buchse unten rechts auf der Leiterplatte. Die Belegungen der Steckverbinder sind in den nachfolgenden Tabellen angegeben. Siehe "Klemmenbelegungen am Panda iControl2-Steuergerät" auf Seite 168.

- 1. Anschlussbuchse Kabelbaum, 18-polig
- 2. Anschlussbuchse, 6-polig, Fischer Panda Standard-Bus
- 3. Anschlussbuchse, 6-polig, Fischer Panda CAN-Bus für optionale Nutzung.
- 4. Anschlussbolzen Phase L3 (Lastausgang zum Inverter) und Eingang von der Wicklung L3

01

- 5. Anschlussbolzen Phase L2 (Lastausgang zum Inverter) und Eingang von der Wicklung L2
- 6. Anschlussbolzen Wicklung L1
- 7. Anschlussbolzen Phase L1 (Lastausgang zum Inverter)
- 8. Eingang Versorgungsspannung +12 V
- 9. Ausgang Vorglühen

16.4.1 Klemmenbelegungen am Panda iControl2-Steuergerät

16.4.1.1 Klemmenbelegung des 18-poligen Steckers

Fig. 16.4.1.1-1: Klemmenbelegung des 18-poligen Steckverbinders

Klemme	E/A	Funktion
1		Stellmotor (Option)
2	E	Temperatur Zylinderkopf
3	Е	Temperatur Auspuffkrümmer
4	Е	Temperatur Wicklung
5	E	Temperatur Reserve
6	E	Öldruck
7	Е	Not-Halt
8		GND, Masse für alle Temperatursensoren
9		GND
10		Stellmotor (Option)
11		+5 V Servo-Motor (rote Leitung)
12	А	PWM-Servo-Motor (gelbe Leitung)
13	А	Booster (Option, abhängig vom Generatortyp)
14	А	Kraftstoffpumpe
15	А	Kraftstoffpumpe
16	А	Anlasser
17	А	Anlasser
18	А	Anlasser

16.4.1.2 Fischer Panda Standard-Bus

Fig. 16.4.1.2-1: Klemmenbelegung Fischer Panda Standard-Bus

Klemme	Klemmenbezeichnung	Funktion
1	UBUS	Bus-Versorgungsspannung
2	GND	Masse Fischer Panda-Bus, Masseverbindung zwischen Panda iControl2-Steuergerät und Panda iControl2-Panel
3	REIZ	Reizleitung, wird vom Panel gegen Masse gezogen, wenn das Steuergerät einschalten soll
4	DATA+	Fischer Panda-Bus Datenleitung A
5	DATA-	Fischer Panda-Bus Datenleitung B
6	UBAT	Batteriespannung

16.4.1.3 Fischer Panda CAN-Bus

Fig. 16.4.1.3-1: Klemmenbelegung Fischer Panda CAN-Bus

Klemme	Klemmenbezeichnung	Funktion
1	UBUS	Bus-Versorgungsspannung
2	GND	Masse Fischer Panda-Bus, Masseverbindung zwischen iControl2-Steuergerät und Panda iControl2-Panel
3	REIZ	Reizleitung, wird vom Panel gegen Masse gezogen, wenn das Steuergerät einschalten soll
4	CAN-L	CAN-Low
5	CAN-H	CAN-High
6	UBAT	Batteriespannung

16.5 Master and Slave Panels

Mit dem iControl2 ist es möglich, bis zu vier Panels an einem iGenerator zu betreiben (ein Master und dei Slave)

Das Standard iControl2 Panel hat die Art. Nr. 21.02.02.131P. Dieses Panel hat eingebaute Abschlusswiderstände.

Das iControl2 Slave Panel hat die Art. Nr. 21.02.02.132P. Es ist mit einem Aufkleber auf der Rückseite "Slave Panel" gekennzeichnet.

In einem iControl System mit Master und Slave Panels muss der AMster immer der letze in der Reihe sein, so dass am Ende des FP-Busses die Abschlusswiderstände sind.

Das Slave Panel kann nicht allein benutzt werden. Das Slave Panel muss zwischen dem iControl Steuergerät (am iGenerator) und dem Master Panel angeschlossen werden.

Der Master Slave Betrieb kann ab der Software 2.3 (Controller und Panel) eingesetzt werden.

Alle Panels (Master and Slave) haben die Adresse "1" eingestellt. Diese Adresse kann im Menü geändert werden. Mögliche Adressen sind 1, 2, 3 und 4. Jedes Panel muss eine eigene Adresse haben.

Um die Option "Automatik-Start" zu nutzen, ist der Automatik-Start an das Panel mit der Adresse "1" anzuschließen.

Die Aktivierung bzw. Deaktivierung kann von jedem Panel aus erfolgen.

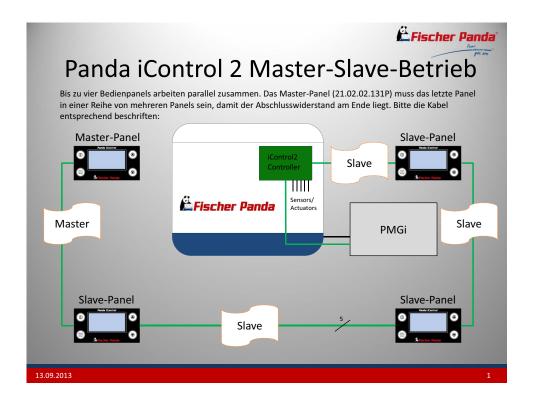


Fig. 16.5-1: Master Slave Schema

16.6 Inbetriebnahme

Nach erfolgter erfolgreicher Installation ist eine Inbetriebnahme durchzuführen.

Hierfür wird das Inbetriebnahmeprotokoll für den Generator vom installierenden Fachmann vollständig abgearbeitet und ausgefüllt. Das ausgefüllte Protokoll ist dem Betreiber zu übergeben.

Der Betreiber ist in die Bedienung, Wartung und Gefahren des Generators einzuweisen. Dieses betrifft sowohl die im Handbuch aufgeführten Wartungsschritte und Gefahren, sowie weiterführende, die sich aus der spezifischen Installation und den angeschlossenen Komponenten ergeben.

Das Original Inbetriebnahmeprotokoll des Generators muss an Fischer Panda gesendet werden, um die vollständige Garantie zu erhalten. Fertigen Sie vorher eine Kopie für Ihre Unterlagen. Hinweis!

Die entsprechenden Vordrucke liegen dem Generatorhandbuch bei.

17. Wartung

17.1 Wartung des icontrol2 Steuergerätes

Das iControl2 Steuergerät ist wartungsfrei. Die Sicherungen im Steuergerät sind selbstheilend.

17.1.1 Reinigung des iControl2 Steuergerätes

Das Gehäuse ist bei der allgemeinen Generatorreinigung mitzureinigen. Das Gehäuse kann nebelfeucht mit einem weichen Tuch abgewischt werden. Hierbei ist darauf zu achten, dass keine Feuchtigkeit in die Buchsen und das Gehäuse eindringt.

17.2 Wartung des iControl2 Fernbedienpanels

Das iControl2 Fernbedienpanel ist wartungsfrei.

17.2.1 Reinigung des iControl2 Fernbedienpanels

Das Display kann mit einem weichen Tuch und Seifenlauge nebelfeucht gereinigt werden. Scharfe Reiniger sind nicht geeignet, und können zum Erblinden der Displayfolie führen.

Leere Seite / Intentionally blank

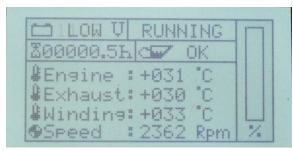
Seite/Page 172 Kapitel/Chapter 17: Wartung 27.5.24

18. Warnungen und Fehlermeldungen

Um einen sicheren Betrieb des Generators zu ermöglichen, gibt es bei der Panda iControl2-Steuerung eine Reihe von Warnungen und Fehlermeldungen, die den Generatorbetrieb beeinflussen.

18.1 Warnungen

Warnungen werden ausgegeben, wenn die überwachte Größe, z. B. eine Temperatur, die definierte Warnschwelle erreicht hat. Die Ausgabe von Warnungen auf dem Display des Panda iControl2-Panels erfolgt durch die zyklische Ausgabe des Wortes "HIGH" bzw. "LOW" im Wechsel mit dem Messwert, z. B. der Temperatur. Warnungen werden erst dann aktiv, wenn die Zeit zwischen dem Erreichen des Schwellenwertes und der definierten Verzögerungszeit abgelaufen ist.


Warnungen führen nicht zu einer Abschaltung des Generators oder der Steuerung. Hinweis!

18.1.1 Beispiele für Warnungen auf dem Display:

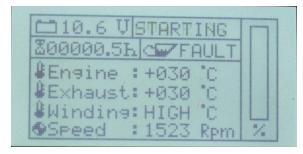

Warnung "Batteriespannung zu niedrig"

Fig. 18.1.1-1: Warnung "Batteriespannung zu niedrig"

Warnung "Temperatur Wicklung zu hoch"

Fig. 18.1.1-2: Warnung "Wicklung" zu hoch"

18.1.2 Warnmeldungen

Alle für Panda iControl2 definierten Warnmeldungen und die entsprechenden Displayausgaben sind in der nachfolgenden Tabelle zusammengestellt.

Fig. 18.1.2-1: Warnmeldungen

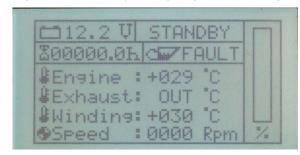
Warnmeldung auf dem Display	Bedeutung der Warnmeldung
"HIGH" blinkt im Wechsel mit dem Temperaturwert des Zylinderkopfes	Zylinderkopftemperatur ist zu hoch, hat die Warnschwelle erreicht
"HIGH" blinkt im Wechsel mit dem Temperaturwert der Wicklung	Wicklungstemperatur ist zu hoch, hat die Warnschwelle erreicht
"HIGH" blinkt im Wechsel mit dem Temperaturwert des Auspuffkrümmers	Temperatur Auspuffkrümmer ist zu hoch, hat die Warnschwelle erreicht
"LOW" blinkt im Wechsel mit dem Spannungswert der Starterbatterie	Spannung der Starterbatterie ist zu niedrig, hat die Warnschwelle erreicht

18.2 Fehler

Fehlermeldungen werden ausgegeben, wenn die überwachte Größe, z.B. eine Temperatur, die definierte Fehlerschwelle erreicht hat.

Bei den Temperatursensoren führt auch ein loser Stecker oder ein Kabelbruch zu einem Fehler und zur Abschaltung des Generators.

Einer Fehlermeldung geht in der Regel eine Warnung voraus, da vor der Fehlerschwelle die Warnschwelle erreicht wird. Die Ausgabe von Fehlermeldungen auf dem Display des Panda iControl2-Panels erfolgt durch die Darstellung des Fehlertextes auf einer gelöschten Displayseite. Fehler werden erst dann aktiv, wenn die Zeit zwischen dem Erreichen der Fehlerschwelle und der definierten Verzögerungszeit abgelaufen ist.


Fehler führen zu einer Abschaltung des Generators. Liegt ein Fehler wegen einer zu niedrigen Batteriespannung vor, so wird die Steuerung vollständig abgeschaltet, um ein zu tiefes Entladen der Batterie zu verhindern.

Beispiel für eine Fehlermeldung auf dem Display:

Fehler "Temperatur Abgaskrümmer out of range"

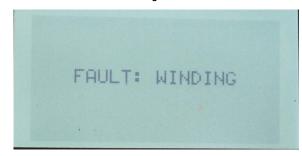

(Kabelbruch)

Fig. 18.2.0-1: Fehler "Zylinderkopftemperatur out of range"

Fehler "Winding", Wicklungstemperatur zu hoch

Fig. 18.2-2: Fehler "STARTING FAILS", Startvorgang war nicht erfolgreich

18.2.1 Fehlermeldungen

Alle für Panda iControl2 definierten Fehlermeldungen und die entsprechenden Displaytexte sind in der nachfolgenden Tabelle zusammengestellt.

Fig. 18.2.1-1: Fehlermeldungen

Fehlermeldung auf dem Display	Bedeutung der Fehlermeldung
"OUT" wird anstelle einer Temperatur ausgegeben	"Out of range" – Kabelbruch am entsprechenden Temperatursensor

Fig. 18.2.1-2: Errorcodes

Error	Meaning	Error Message English	Error Message German
code	Otantia a faile d	OTA DTINO FAIL O	OTARTARREUM
5	Starting failed	STARTING FAILS	STARTABBRUCH
9	Watchdog Error	WATCHDOG	WATCHDOG
12	Winding temperature fault	FAULT: WINDING	TEMP. WICKLUNG
13	Winding temperature out of range	OUT: WINDING	OUT: WICKLUNG
14	Exhaust temperature fault	FAULT: EXHAUST	TEMP. ABGAS
15	Exhaust temperature out of range	OUT: EXHAUST	OUT: ABGAS
16	Engine temperature fault	FAULT: CYL.HEAD	TEMP. MOTOR
17	Oil pressure fault	FAULT: OILPRESS	FEHLER: OELDRUCK
18	Battery voltage low	BATTERY LOW	BATTERIE ENTLADEN
19	unexpected stop/Problem with fuel supply	PROBLEM WITH / FUEL SUPPLY!	PROBLEM MIT DER / KRAFTSTOFFVERS.!
22	Emergency stop	EMERGENCY STOP!	NOT-HALT!
23	Engine temperature out of range	OUT: CYL.HEAD	OUT: MOTOR
30	Inverter overtemp	Inverter overtemp	Inverter Uebertemp.
31	inverter overload	Inverter overload	Inverter Ueberlast
32	inverter communication lost	Inverter com. lost	Inverter Kom. defekt
33	inverter synchronisation lost	INV. SYNC. FAILED	INV. SYNC. FEHLER
34	Engine fault (EDC)	ENGINE FAULT	MOTOR FEHLER
35	CAN communication lost	CAN. COMM.LOST	CAN KOMM. FEHLER
36	inverter overload slave 1	L1 OVERLOAD	L1 UEBERLAST
37	inverter overload slave 2	L2 OVERLOAD	L2 UEBERLAST
38	inverter overload slave 3	L3 OVERLOAD	L3 UEBERLAST
39	inverter overload slave DC	DC OVERLOAD	DC UEBERLAST
40	Overvoltage	FAULT: OVERVOLTAGE	Fehler: Ueberspg.
41	Undervoltage	FAULT: LOWVOLTAGE	Fehler: Unterspg.
42	DC-Overvoltage	DC OVERVOLTAGE	DC UEBERSPG.
66	RedundantTempSwitchOff	NOTSTOP!	NOTSTOPP!
100	Communication Error	NO CONNECTION / BUS ERROR!	KEINE VERBINDUNG / BUS FEHLER!
207	Init failed (no generator type is selected)	INIT FAILED!	INIT FAILED!

Fehlermeldungen können mit der Start-/Stop-Taste quittiert werden. Die Steuerung geht dann in den Standby-Modus zurück.

18.2.2 Warn- und Fehlerschwellen

Die Schwellenwerte, die zur Auslösung von Warnungen und Fehlern führen, sind abhängig vom Generatortyp und in der unteren Tabelle zusammengestellt.

Fig. 18.2.2-1: Warn- und Fehlerschwellen für unterschiedliche Generatortypen

Generatortyp	Warnung/Fehler	Warnschwelle	Fehlerschwelle
5000i Marine	Zylinderkopftemperatur	85 °C	95 °C
	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	70 °C	75 °C
	Verzögerung	1 s	1 s
5000i Fahrzeug	Zylinderkopftemperatur	90 °C	95 °C
300011 amzeug	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
			105 °C
	Temp. Auspuffkrümmer Verzögerung	100 °C 1 s	105 C
P8000i / P10000i Marine	Zylinderkopftemperatur	90 °C	95 °C
	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	70 °C	75 °C
	Verzögerung	1 s	1 s
P8000i / P10000i Fahrzeug	Zylinderkopftemperatur	90 °C	95 °C
	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	100 °C	105 °C
	Verzögerung	1 s	1 s
P8-P50 Marine	Zylinderkopftemperatur	90 °C	95 °C
1 0-1 30 Marine	Verzögerung	5 s	5 s
		130 °C	135 °C
	Wicklungstemperatur Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	70 °C	75 °C
	Verzögerung	1 s	1 s
P8-P50 Fahrzeug	Zylinderkopftemperatur	95 °C	100 °C
	Verzögerung	5 s	5 s
	Wicklungstemperatur	160 °C	165 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	100 °C	105 °C
	Verzögerung	1 s	1 s
P15000i Marine	Zylinderkopftemperatur	90 °C	95 °C
	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	70 °C	75 °C
	Verzögerung	2 s	2 s
P15000i Fahrzeug	Zylinderkopftemperatur	90 °C	95 °C
	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	95 °C	100 °C
	Verzögerung	2 s	2 s
DOSi Marin -			
P25i Marine	Zylinderkopftemperatur	90°C	95°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5S
	Temp. Auspuffkrümmer	70°C	75°C
	Verzögerung	28	2S

Generatortyp	Warnung/Fehler	Warnschwelle	Fehlerschwelle
P25i Fahrzeug	Zylinderkopftemperatur	90°C	95°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	100°C	105°C
	Verzögerung	2s	2s
P45i Marine 230V/400V	Zylinderkopftemperatur	90°C	95°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	80°C	85°C
	Verzögerung	2s	2s
P45i Fahrzeug 230V/400V	Zylinderkopftemperatur	98°C	105°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	100°C	105°C
	Verzögerung	2s	2s
P45i Marine 3x230V	Zylinderkopftemperatur	98°C	105°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	70°C	75°C
	Verzögerung	2s	2s
P45i Fahrzeug 3x230V	Zylinderkopftemperatur	98°C	105°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	100°C	105°C
	Verzögerung	2s	2s
P60i Marine	Zylinderkopftemperatur	90°C	95°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	70°C	75°C
	Verzögerung	2s	2s
P60i Fahrzeug	Zylinderkopftemperatur	90°C	95°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	95°C	98°C
	Verzögerung	2s	2s
Alle Generatortypen	Spannung Starterbatterie niedrig	11,8 V	10,8 V
	Verzögerung	30 s	30 s
	Spannung Starterbatterie hoch	15,0 V	
		5 s	


18.2.3 Busfehler

Kommt es auf dem Fischer Panda-Bus zu einem Verlust der Kommunikation, wird nach einer Zeitdauer von 10 Sekunden ein Fehler auf dem Display ausgegeben:

Dieser Fehler tritt auf, wenn mindestens eine der zwei Datenleitungen des Fischer Panda-Busses aufgetrennt wird. Ist die Verbindung wieder hergestellt, kann die Fehlermeldung mit der Start-/Stop-Taste quittiert werden.

Fig. 18.2.3-1: Fehler "NO CONNECTION", Fehler in der Kommunikation (Fischer Panda Bus)

Beim Verlust der Kommunikation ist der Generator zu sichern (Batterietrennschalter öffnen) und alle Steckverbindungen und Kabel auf festen Sitz bzw. Beschädigungen zu überprüfen.

18.3 Der Fehlerspeicher des iControl2 Panels

Die Panda iControl2-Steuerung besitzt ab der Software-Version PiC2_2.9 (Steuerplatine) und PiP2_2.9 (Bedienpanel) einen Fehlerspeicher, in dem die letzten sechs Fehler im Klartext dokumentiert werden.

18.3.1 Wie erreicht man den Fehlerspeicher des iControl2-Panels?

Der Fehlerspeicher ist ganz einfach über das für jeden Benutzer offene Setup-Menü des Bedienpanels erreichbar.

Das Setup-Menü erreicht man wie gewohnt:

- Um in das Setup-Menü zu gelangen, betätigt man direkt nach dem Einschalten der Steuerung <u>und noch während</u> <u>der Ausgabe der Startseite mit dem Panda-Bären</u>, die Taste "Cursor down".
- Sie sehen nun das Setup-Menü mit seinen Menüpunkten.
- Über die Tasten "Cursor-Up" und "Cursor-Down" können Sie durch das Menü navigieren.
- Der aktuell selektierte Menüpunkt ist durch zwei *-Symbole markiert.
- Die Start-/Stop-Taste wird im Setup-Menü zur Bestätigung verwendet. Wenn Sie die durch * markierte Zeile mit der Start-/Stop-Taste bestätigen, erreichen Sie das ausgewählte Untermenü.
- Wählen Sie für die Anzeige des Fehlerspeichers den Menüpunkt Error mem.

18.3.2 Wie werden abgespeicherte Fehler angezeigt?

Die Fehler werden im Klartext angezeigt. Vorangestellt ist die Betriebsstunde, in der der Fehler aufgetreten ist. Der Fehler mit der höchsten Betriebsstunde wird in der ersten Zeile angezeigt. Ältere Fehlereinträge befinden sich absteigend mit der Betriebsstunde in den darunterliegenden Zeilen. Sind bereits sechs Fehler im Speicher vorhanden, so wird der älteste Eintrag gelöscht.

Ein Beispiel für die Ausgabe eines Fehlereintrages: **3045.2h COMMUNICATION**Dieser Eintrag bedeutet: In der Betriebsstunde 3045.2 ist ein Fehler in der Buskommunikation aufgetreten.

18.3.3 Wie verlasse ich den Fehlerspeicher nach dem Betrachten der Einträge?

Über die Start-Stopp-Taste kommt man zurück zur Standby-Seite.

18.3.4 Kann ich den Fehlerspeicher löschen?

Nein, das Löschen des Fehlerspeichers ist nicht möglich.

18.3.5 Wo werden die Fehler abgespeichert?

Im EEPROM des Panels oder im Speicher der Steuerplatine.

Die Fehler werden im EEPROM der Steuerplatine gespeichert. Das Bedienpanel zeigt die dort gespeicherten Fehlereinträge nur an. Sollte im Servicefall das Bedienpanel ausgetauscht werden müssen, bleiben die Einträge im Fehlerspeicher erhalten.

18.3.6 In welcher Sprache werden die gespeicherten Fehler angezeigt?

Die Anzeige der gespeicherten Fehler erfolgt in der Sprache, die am Bedienpanel eingestellt ist, je nach gewählter Einstellung also in Englisch oder in Deutsch.

18.3.7 Ist es möglich, einen älteren iGenerator um den Fehlerspeicher zu erweitern?

Ja, durch ein Software-Update bei Steuerplatine und Panel ist es möglich, ein bestehendes System um diese Funktion zu erweitern.

Fig. 18.3.7-1: Abbildung: Ausgabe der gespeicherten Fehler auf dem Bedienpanel

Leere Seite / Intentionally blank

19. Anhang

19.1 Technische Daten

19.2 Technische Daten iControl2 Steuergerät

Fig. 19.2-1: Technische Daten iControl 2 Steuergerät

	iControl 2 Steuergerät
Versorgungsspannung	12 V-13,5 V (12 V Automotive)
Stromverbrauch Nominal	175 mA
Stromverbrauch Standby	2,5 mA
Betriebstemperatur	-20 °C bis +85 °C
Lagertemperatur	-30 °C bis +85 °C
Hallelement Stromsensor	max. 20 A
max. Anzugsmoment der Anschlussbolzen	1,2 Nm

19.3 Technische Daten iControl2 Fernbedienpanel

Fig. 19.3-1: Technische Daten iControl2 Fernbedienpanel

	iControl 2 Steuergerät
Versorgungsspannung	12 V-24 V (12 V oder 24 V Automotive)
Stromverbrauch ausgeschaltet	0 mA
Stromverbrauch Standby - Backlight Helligkeit 9	45 mA
Stromverbrauch Standby - Backlight Helligkeit 4	33 mA
Stromverbrauch Standby - Backlight Helligkeit 0	25 mA
Betriebstemperatur	-20 °C bis +70 °C
Lagertemperatur	-30 °C bis +80 °C

19.4 CO2 Bilanz aus dem Abgasmesszyklus bei Motoren nach 2016/1628 EC

Für Generatoren die nach 2016/1628 EC zugelassen sind gilt, bezogen auf den Motor, nachfolgende CO2- Bilanz aus dem Abgasmesszyklus:

Fig. 19.4-1: CO2 Bilanz aus dem Abgasmesszyklus bei Motoren nach 2016/1628 EC

CO2- Bilanz aus dem Abgasmesszyklus				
Engine	Engine Category	Engine family type	Type approval	CO2 Bilance Testcycle [g/kwh]
Z482	NRE-v-2	HKBXL.778KCB	e1*2016/1628*2016/1628EV2/D*0008*00	1019,8
D722	NRE-v-2	HKBXL.778KCB	e1*2016/1628*2016/1628EV2/D*0008*00	
Z602	NRE-v-2	HKBXL.898KCB	e1*2016/1628*2016/1628EV2/D*0009*00	1047.4
D902	NRE-v-2	HKBXL.898KCB	e1*2016/1628*2016/1628EV2/D*0009*00	
D1105	NRE-v-2	HKBXL01.5BCB	e1*2016/1628*2016/1628EV2/D*0010*04	1018.0

Der Abgasaufkleber am Ventildeckel zeigt an, zu welcher Abgashomogolation der Motor zugehörig ist.

Fig. 19.4-2: Beispiel Z482 E4B IMS2