

Handbuch Marine Generator

Panda 5000i.Neo PMS Super silent technology 230 V 50 Hz 5kVA

Panda_5000i.Neo_PMS_deu.R05.1

20.8.19

Aktueller Revisionsstand

	Dokument
Aktuell:	Panda_5000i.Neo_PMS_deu.R05.1_20.8.19
Ersetzt:	Panda_5000i.Neo_PMS_deu.R05

Revision			
Handbuchsprache berichtigt R01.1			
Installation - Seewasseranschlussleitung berichtigt			
Anschlussdurchmesser Seewasser berichtigt R1.3			
Anschlusspunkte MPL eingefügt Revision von R01.3 auf R05			
Recommend Battery ChargerR05.1			

Erstellt durch / created by

Fischer Panda GmbH - Leiter Technische Dokumentation

Otto-Hahn-Str. 32-34

33104 Paderborn - Germany

Tel.: +49 (0) 5254-9202-0

email: info@fischerpanda.de

web: www.fischerpanda.de

Copyright

Die Vervielfältigung und Änderung des Handbuches ist nur mit der Erlaubnis und Absprache des Herstellers erlaubt!

Alle Rechte an Text und Bild der vorliegenden Schrift liegen bei Fischer Panda GmbH, 33104 Paderborn. Die Angaben wurden nach bestem Wissen und Gewissen gemacht. Für die Richtigkeit wird jedoch keine Gewähr übernommen. Es wird ausdrücklich darauf hingewiesen, dass technische Änderungen zur Verbesserung des Produktes ohne vorherige Ankündigung vorgenommen werden können. Es muss deshalb vor der Installation sichergestellt werden, dass die Abbildungen, Beziehungen und Zeichnungen zu dem gelieferten Gerät passen. Im Zweifelsfall muss bei der Lieferung nachgefragt werden.

П	anubu	icii iviai ii	e Generator	'			
ΑI	Aktueller Revisionsstand2						
1	Allge	emeine H	linweise und Vorschriften	10			
	1.1	Sicherh	eit ist oberstes Gebot!	10			
	1.2	Entsorg	ung	11			
	1.3	Herstell	ererklärung im Sinne der Maschinenrichtlinie 2006/42/EG	12			
	1.4	Kundenregistrierung und Garantie					
		1.4.1	Technischer Support				
		1.4.2	Achtung, wichtiger Hinweis zur Inbetriebnahme!	. 12			
	1.5	Sicherh	eitshinweise - Sicherheit geht vor!	13			
		1.5.1	Der sichere Betrieb				
		1.5.2	Die Sicherheitshinweise beachten!				
		1.5.3	Persönliche Schutzkleidung				
		1.5.4	Sauberkeit schützt				
		1.5.5 1.5.6	Sicherer Umgang mit Kraftstoffen und Schmiermitteln				
		1.5.6	Vorsichtsmaßnahmen gegen Verbrennungen und Batterieexplosionen				
		1.5.8	Schützen Sie Hände und Körper vor drehenden Teilen!				
		1.5.9	Frostschutz und Entsorgung von Flüssigkeiten				
		1.5.10	Durchführung von Sicherheitsüberprüfung und Wartung				
	1.6						
		1.6.1	Besondere Hinweise und Gefahren bei Generatoren	. 16			
			1.6.1.1 Schutzleiter und Potenzialausgleich:				
			Schutzleiter bei Panda AC Generatoren:				
			1.6.1.4 Potenzialausgleich bei Panda AGT DC Generatoren				
			1.6.1.5 Sicherheitshinweise bezüglich Kabel				
2	lm N	n Notfall - Erste Hilfe / In case of emergency - First Aid1					
	2.1		sstillstand bei Erwachsenen				
2	Grun	dlagon		21			
J		•					
			nungsgemäße Verwendung				
	3.2		rung des Handbuches und Erklärung der Personenkreise				
		3.2.1 3.2.2	Fachkräfte Betreiber				
		3.2.2	Bediener				
	3.3		nenten des i-Systems				
	3.4	•	der Fischer Panda Transportbox				
	3.4	3.4.1	Verschraubte Fischer Panda Transportbox				
		3.4.2	Fischer Panda Transportbox mit Metalllaschenverschluss				
	3.5	Öffnen	der Schalldämmkapsel aus GFK				
	3.6	Transport und Verlastung					
	0.0	3.6.1	Transport des Generators				
		3.6.2	Verlasten des Generators.				
	3.7	Speziell	le Wartungshinweise und Maßnahmen bei langen Stillstandzeiten und Außerbetriebnahme	. 25			
		3.7.1	Hinweise für die Starterbatterie bei längeren Stillstandszeiten				
		3.7.2	Maßnahmen bei kurzfristigem Stillstand	. 26			

		3.7.3	Maßnahmen bei mittelfristigem Stillstand / Überwinterung		26	
			nate) 27	,,,,	0 1110	
		3.7.4	Maßnahmen bei langfristigem Stillstand / Außerbetriebnahme			
			3.7.4.1 Maßnahmen der Konservierung:			
4	Pano	da 5000i l	PMS Generator		. 31	
	4.1	Lage de	es Typenschildes		. 31	
	4.2	Beschre	eibung des Generators		. 32	
		4.2.1	Seitenansicht rechts		32	
		4.2.2	Seitenansicht links		33	
		4.2.3	Frontansicht			
		4.2.4	Rückansicht			
		4.2.5	Anschlusspunkte bei der MPL Schalldämmkapsel			
	4.3	Beschre	eibung der Komponenten und Kreisläufe		. 37	
	4.4	Das Par	nda iControl2-Panel			
		4.4.1	Das Kühlsystem			
		4.4.2	Das Kraftstoffsystem			
		4.4.3	Komponenten des elektrischen Systems			
		4.4.4	Das Schmierölsystem			
		4.4.5	Sensoren und Schalter zur Betriebsüberwachung			
5		llation 4				
	5.1	Personal				
	5.2		ungsort			
		5.2.1	Vorbemerkungen			
		5.2.2	Einbauort und Fundament			
		5.2.3	Hinweis zur optimalen Schalldämmung			
	5.3		üsse am Generator - Übersichtsschema			
	5.4		isse am Generator - Beispiel			
	5.5		uss des Kühlwassersystems - Seewasser			
		5.5.1	Allgemeine Hinweise			
		5.5.2	Anordnung der Borddurchführung bei Yachten - Schema			
		5.5.3 5.5.4	Qualität der Seewasseransaugleitung Einbau des Generators über der Wasserlinie			
		5.5.4 5.5.5	Einbau des Generator unter der Wasserlinie			
		5.5.5	5.5.5.1 Seewasser Installationsschema			
		5.5.6	Erstes Befüllen und Entlüften des internen Kühlwasserkreises			
			5.5.6.1 Frostschutz im Kühlkreislauf		50	
		5.5.7	Temperaturprüfung zur Kontrolle des Kühlkreises		50	
	5.6	Installati	tion des Standard-Abgassystems - Schema		. 51	
		5.6.1	Auslegung des Abgassystems		51	
	5.7	Einbau	des "Wassersammlers"			
		5.7.1	Mögliche Ursachen für Wasser in der Abgasleitung			
			5.7.1.1 Mögliche Ursache: Abgasleitung			
		5.7.2	5.7.1.2 Mogliche disache. Kuniwasseneitung			
		J.1.Z	Embadort for don Abyaswassonsammor		JZ.	

	5.7.3	Das Volu 5.7.3.1	umen des Abgaswassersammlersldeale Position des Wassersammlers	54
		5.7.3.2	Beispiel für den Einbau des Wassersammlers außerhalb der Mitte mit möglichen Folgen: 55	Darstellung der
5.8	Abgas-V	Vasser Tr	enneinheit	57
5.9	Installation Abgas-Wasser-Trenneinheit- Schema			57
5.10			aftstoffsystems	
	5.10.1	_	enden Komponenten müssen installiert werden:	
	5.10.2 5.10.3		ss der Leitungen am Tankdes Vorfilters mit Wasserabscheiders	
	5.10.4		ng des Kraftstoffsystems	
5.11	Generat	or DC Sys	stem-Installation	61
	5.11.1		ss der Starterbatterie	
	5.11.2		r	
5 40	5.11.3		ss des Fernbedienpanels - siehe Fernbedienpanel Datenblatt	
5.12	5.12.1		stem-Installation on PMGi inverter - Siehe PMGi 5000 Inverter Kapitel	
	0.12.1		Trennschalter - Stromwahlschalter	
5.13	Hinweise	e zur Verr	neidung von galvanischer Korrosion	66
	5.13.1	Hinweise	e und Maßnahmen zur Vermeidung von Korrosion	66
5.14	Überprü	fen und A	uffüllen des Schmierölkreislaufs	67
5.15	Isolation	stest		67
5.16	Inbetrieb	nahme		67
Wart	ungshinv	veise		69
6.1	Persona	l		69
6.2	Gefahre	nhinweise	e für die Wartung	69
6.3	Entsorgu	ıng der M	otorflüssigkeiten	70
6.4	Wartung	sintervalle	9	71
6.5	Ū		ngshinweise	
		_	steileen vor jedem Start	
	6.5.2 6.5.3		e Schlauchelemente und Gummiformteile in der Schalldämmkapsel	
6.6			wasserkreislaufes	
	6.6.1		serfilter reinigen	
6.7	Seewass	serpumpe	und Impeller	73
	6.7.1		en bei häufigem Impellerverschleiß	
	6.7.2		ch des Impellers	
6.8	Motoröl 6.8.1	'	d auffüllen Prüfen	
	6.8.2		llen	
	6.8.3		r Ölstandskontrolle und dem Ölauffüllen	
6.9	Wechse		torenöls und des Motorölfilters	
	6.9.1		m Ölwechsel	
6.10			/asserabscheiders in der Kraftstoffleitung	
	6.10.1		ch des Kraftstoff Feinfilters	
6.11	Entlüfter	n des Kraf	tstoffsystems	81

6

		6.11.1	Austausch des Luftfilters	82
	6.12	Entlüfter	n des Frischwassersystems	83
	6.13	Wartung	des Seewasserkreislaufes	84
		6.13.1	Seewasserfilter reinigen	84
		6.13.2	Seewasserpumpe und Impeller	
		0.40.0	6.13.2.1 Ursachen bei häufigem Impellerverschleiß	
		6.13.3	Austausch des Impellers	85
7	Tabe	llen		87
	7.1	Anschlus	ssdurchmesser	87
	7.2	Techniso	che Daten	87
		7.2.1	Anzugsmomente FPE-320	87
	7.3	Verscha	ltung der Wicklung	88
	7.4	Motoröl.		88
		7.4.1	Motoröl Spezifikation	88
		7.4.2	Kraftstoff	88
	7.5	Kühlwas	ser	88
		7.5.1	Empfohlenes Frostschutzmittel	89
		7.5.2	Verhältnis Kühlwasser/Frostschutz	89
8	Inve	rter Pand	a PMGi 5000	91
	8.1	Sicherhe	eitshinweise	92
	8.2	Typenso	hild	92
	8.3		ssseite/Unterseite	
	0.0	8.3.1	Buchsenbelegung des PMGi 5000	
	8.4	5 5		
	8.5		ngen zum Betrieb von iGeneratoren mit Lade/Wechselrichtern	
	0.0	8.5.1	Einstellungen in der Victron VE Configure II Software - General	
			8.5.1.1 Uninterrupted AC power (UPS funktion)	97
			8.5.1.2 Dynamic current limiter	
		8.5.2	Einstellungen in der Victron VE Configure II Software - Inverter	
		D		
	8.6	Betriebs: 8.6.1	anleitung	
		8.6.2	Belastung des PMGi	
		8.6.3	Automatikstart	
	8.7		zeigen	
	8.8		PMGi	
		J	on des PMGi	
	8.9	8.9.1	Elektrischer Anschluss	
		0.5.1	8.9.1.1 Anschluss an ein RCD überwachtes System	
			8.9.1.2 Anschluss an Systeme mit Isolationsüberwachung	
	8.10	Techniso	che Daten	101
		8.10.1	Allgemeine Daten	
		8.10.2	Generator Spezifikation	
		8.10.3	PMGi Ausgangs-Spezifikation	
		8.10.4	Überlastung	
		8.10.5	Kurzschluss	

Panda iControl2		103
Aktuel	ler Revisionsstand	104
Hardw	are	104
9 Sicl	herheitshinweise Panda iControl2	105
9.1	Personal	105
9.2	Sicherheitshinweise	105
10 Gar	nerelle Bedienung	107
10.1	_	
10.2		
10.2	10.2.1 Marine Version	
	10.2.2 Fahrzeug Version	
10.3	9	
	10.3.1 Ein- und Ausschalten der Steuerung	
	10.3.2 Die Standard Displayseite	
	10.3.3 Betriebsmodi	
	10.3.3.1 Standby-Modus	
	10.3.3.2 Start-Modus	
	10.3.3.4 Operation-Modus	
	10.3.3.5 Panda i-Generator mit elektro-magnetischer Kupplung (optional)	
	10.3.3.6 Stopp-Modus	
	10.3.3.7 Autostart-Modus	
10.4	Weiterführende Bedienung	
	10.4.1 Setup-Menü	
	10.4.2 Einstellen der Helligkeit der Hintergrundbeleuchtung ("backlight" und "dimtime")	
	10.4.3 Das Konfigurationsmenü ("config")	
	10.4.4 Die Network ID	
	10.4.6 Aktivieren/Deaktivieren der Autostartfunktion ("Autostart")	
	10.4.7 Service-Intervall zurücksetzen ("Service")	
	10.4.8 Entlüften des Kraftstoffsystems ("Prime Fuel")	
	10.4.9 Einheit für die Ausgabe der Temperaturwerte auswählen und speichern	
10.5	5 iControl2-Not-Stop	121
11 Inst	tallation	123
	1 Personal	
	11.1.1 Gefahrenhinweise für die Installation	
11.2	2 Entsorgung der Komponenten	
1 1 . 2	11.2.1 Panda iControl2-Panel mit Einbaugehäuse	
	11.2.2 Klemmenbelegungen am Panda iControl2-Panel	
11.3	3 Abmessungen	126
11.4	4 Beschaltung des Panda iControl2-Steuergerätes	127
	11.4.1 Klemmenbelegungen am Panda iControl2-Steuergerät	128
	11.4.1.1 Klemmenbelegung des 18-poligen Steckers	
	11.4.1.2 Fischer Panda Standard-Bus	
11.5	5 Master and Slave Panels	129

11.6	Inbetrie	onahme	129
12 War	tung		131
12.1	Wartung	g des icontrol2 Steuergerätes	131
	12.1.1	Reinigung des iControl2 Steuergerätes	131
12.2	Wartung	g des iControl2 Fernbedienpanels	131
	12.2.1	Reinigung des iControl2 Fernbedienpanels	131
I3 War	nungen u	nd Fehlermeldungen	133
13.1		gen	
	13.1.1	Beispiele für Warnungen auf dem Display:	133
	13.1.2	Warnmeldungen	134
13.2	Fehler		134
	13.2.1	Fehlermeldungen	135
	13.2.2	Warn- und Fehlerschwellen	
	13.2.3	Busfehler	137
13.3	Der Feh	lerspeicher des iControl2 Panels	138
	13.3.1	Wie erreicht man den Fehlerspeicher des iControl2-Panels?	138
	13.3.2	Wie werden abgespeicherte Fehler angezeigt?	138
	13.3.3	Wie verlasse ich den Fehlerspeicher nach dem Betrachten der Einträge?	
	13.3.4	Kann ich den Fehlerspeicher löschen?	139
	13.3.5	Wo werden die Fehler abgespeichert?	
	13.3.6	In welcher Sprache werden die gespeicherten Fehler angezeigt?	
	13.3.7	Ist es möglich, einen älteren iGenerator um den Fehlerspeicher zu erweitern?	139
l4 Anh	ang		141
14.1	Technis	che Daten	141
14.2	Technis	che Daten iControl2 Steuergerät	141
14.3	Technische Daten iControl2 Fernbedienpanel		

Sehr verehrter Kunde,

vielen Dank, dass Sie sich für den Kauf eines Fischer Panda Generators entschieden haben und Fischer Panda als Ihren Partner für mobile Energie an Bord gewählt haben. Mit Ihrem Generator haben Sie die Möglichkeit, Ihren eigenen Strom zu produzieren – wherever you are - und Sie sind damit noch unabhängiger. Sie haben nicht nur einen Fischer Panda Generator an Bord; Sie werden auch weltweit von unserem Fischer Panda Team unterstützt. Bitte nehmen Sie sich die Zeit, diese Informationen zu lesen. Wir unterstützen Sie auch bei:

Abnahme der Generatorinstallation und Garantie

Jeder Generator hat eine weltweite Garantie. Sobald die Installation abgenommen wurde, können Sie die Garantie durch Ihren Händler registrieren lassen. Falls Sie eine erweiterte Garantie erworben haben, heben Sie diese gut auf und stellen Sie sicher, dass Ihr Händler Ihre aktuelle Adresse hat. Lassen Sie sich von Ihrem Händler bezüglich Garantieoptionen beraten, vor allem, wenn Sie einen gebrauchten Generator gekauft haben. Er kann Sie unterstützen und Ihnen weltweit die autorisierten Fischer Panda Servicestationen mitteilen.

Service und Support

Um sicherzustellen, dass Ihr Generator einwandfrei läuft, müssen regelmäßige Wartungen und Aufgaben, wie im Handbuch beschrieben, durchgeführt werden. Fischer Panda kann Service Kits liefern, die auf regelmäßige Instandhaltungsarbeiten abgestimmt sind. Wir liefern nur Komponenten höchster Qualität und es ist sichergestellt, dass Sie die RICHTIGEN Ersatzteile für Ihren Generator erhalten. Service "Plus" Kits sind auch erhältlich und sind ideal für längere Fahrtzeiten, wenn mehr als ein Serviceintervall notwendig ist.

Wenn Sie Hilfe benötigen, kontaktieren Sie bitte Ihren Fischer Panda Händler. Bitte versuchen Sie nicht, Reparaturen selbst durchzuführen, da dies Ihre Generatorgarantie beeinträchtigen kann. Ihr Händler kann Ihnen behilflich sein, die nächstgelegene Fischer Panda Servicestation zu finden. Sie können auch die nächste Servicestation in unserem Global Service Netzwerk finden, welches als Download auf unserer Homepage zur Verfügung steht.

Produktregistrierung

Bitte nehmen Sie sich Zeit. Ihren Fischer Panda Generator auf unserer Webseite unter

http://www.fischerpanda.de/mypanda zu registrieren.

Durch das Registrieren wird gewährleistet, dass Sie immer auf dem neuesten Stand sind. Sie erhalten technische Upgrades oder spezielle Informationen über den Betrieb oder die Wartung Ihres Generators. Ebenso werden Sie über neue Fischer Panda Produkte informiert, was besonders hilfreich sein kann, wenn Sie Ihre Installation zu einem späteren Zeitpunkt erweitern wollen.

Fischer Panda Qualität - zertifiziert nach DIN ISO 9001

Vielen Dank für den Kauf eines Fischer Panda Generators.

Ihr Fischer Panda Team

Allgemeine Hinweise und Vorschriften

Sicherheit ist oberstes Gebot!

Warnzeichen werden in diesem Handbuch verwendet, wenn bei Ausführung bestimmter Wartungsarbeiten bzw. Bedienungsvorgängen Verletzungs- oder Lebensgefahr besteht. Die so gekennzeichneten Hinweise müssen auf jeden Fall genau durchgelesen und befolgt werden.

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Es muss immer die Batteriebank abgeklemmt werden (zuerst Minuspol dann Pluspol), wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

Unsachgemäße Wartung kann zu schweren Personen- oder Sachschäden führen. Deshalb:

- Wartungsarbeiten nur bei abgestellten Motor Vornehmen
- · Vor Beginn der Arbeiten für ausreichende Montagefreiheit sorgen
- auf Ordnung und Sauberkeit am Arbeitsplatz achten! Lose aufeinander- oder umherliegende Bauteile und Werkzeuge sind Unfallquellen
- Wartungsarbeiten nur mit Handelsüblichen Werkzeug und Spezielwerkzeug durchführen. Falsches oder beschädigtes Werkzeug kann zu Verletzungen führen

Öl und Kraftstoffdämpfe können sich bei Kontakt mit Zündquel- Warnung!: Feuergefahr len entzünden. Deshalb

- Kein offenes Feuer bei arbeiten am Motor
- · nicht rauchen
- Öl und Kraftstoffrückstände vom Motor und vom Boden entfernen

Kontakt mit Motoröl, Kraftstoff und Frostschutzmittel kann zur Gesundheitsschädigung beim Einatmen, beim Verschlucken oder bei Hautkontakt führen. Deshalb:

- · Hautkontakt mit Motoröl, Kraftstoff und Frostschutzmittel vermeiden.
- Öl und Kraftstoffspritzer umgehend von der Haut entfernen.
- Öl und Kraftstoffdämpfe nicht einatmen.

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Die elektrischen Spannungen von über 60 V sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

Warnung!: Automatikstart

Warnung!: Verletzungsgefahr

Vorsicht!: Vergiftungsgefahr

Warnung!: Elektrische Spannung

Generator und Kühlwasser können bei und nach dem Betrieb heiß sein. Verbrennungs-/Verbrühungsgefahr!

Durch den Betrieb kann sich im Kühlsystem ein Überdruck bilden.

Batterien enthalten ätzende Säure und Laugen.

Durch unsachgemäße Behandlung können sich Batterien erwärmen und bersten. Ätzende Säure /Lauge auslaufen. Unter ungünstigen Bedingungen kann es zu einer Explosion kommen.

Beachten Sie die Hinweise Ihres Batterieherstellers.

Persönliche Schutzausrüstung ist ggf. zu Tragen. Hierzu gehört:

- · Eng anliegende Schutzkleidung
- Sicherheitsschuhe
- Sicherheitshandschuhe
- Gehörschutz
- ggf. Schutzbrille

Um Schäden an den Geräten zu vermeiden, sind bei Arbeiten am Generator immer alle Verbraucher abzuschalten.

Warnung!: Heiße Oberfläche/Material

Warnung:

Gebot!: Schutzausrüstung erforderlich

Achtung!: Alle Verbraucher abschalten.

1.2 Entsorgung

Motorflüssigkeiten/Batterien sind schädlich für die Umwelt.

Abgelassene Motorflüssigkeiten sammeln und fachgerecht entsorgen!

Batterien fachgerecht entsorgen.

Gebot!: Der Umwelt zu liebe.

1.3 Herstellererklärung im Sinne der Maschinenrichtlinie 2006/42/EG

Herstellererklärung im Sinne der Maschinenrichtlinie 2006/42/EG

Der Generator ist so aufgebaut, dass alle Baugruppen den **CE-Richtlinien** entsprechen. Falls die Maschinenrichtlinie 2006/42/EG anwendbar ist, ist die Inbetriebnahme des Generators so lange untersagt, bis festgestellt wurde, dass die Anlage, in die der Generator eingebaut werden soll, den Bestimmungen der Maschinenrichtlinie 2006/42/EG entspricht. Dieses betrifft unter anderem das Abgas- und Kühlsystem sowie die elektrische Installation.

Die Beurteilung des Berührungsschutzes muss in eingebautem Zustand in Verbindung mit der jeweiligen Anlage durchgeführt werden. Ebenso ist, unter anderem, der korrekte elektrische Anschluss, eine sichere Erdleiterverbindung, der Fremdkörper- und Feuchtigkeitsschutz, der Schutz gegen Feuchtigkeit infolge übermäßiger Kondensation sowie die Erwärmung im sachgemäßen und unsachgemäßen Gebrauch im eingebauten Zustand in der jeweiligen Maschine zu beurteilen. Die Durchführung dieser Maßnahmen liegt im Verantwortungsbereich desjenigen, der den Einbau des Generators in ein(e) Endgerät / -anlage vornimmt.

1.4 Kundenregistrierung und Garantie

Nutzen Sie die Vorteile der Kundenregistrierung:

- Sie erhalten ein Garantie-Zertifikat nach Prüfung Ihrer Installationsdaten.
- Sie erhalten erweiterte Produktinformationen, die unter Umständen sicherheitsrelevant sind.
- Sie erhalten, wenn nötig, kostenlose Upgrades.

Weitere Vorteile:

Durch Ihre vollständigen Angaben können Ihnen die Fischer Panda Techniker schnelle Hilfestellung geben, da 90 % der Störungen durch Fehler in der Peripherie entstehen.

Probleme durch Fehler in der Installation können im Vorfeld erkannt werden.

1.4.1 Technischer Support

Technischer Support per Internet: info@fischerpanda.de

1.4.2 Achtung, wichtiger Hinweis zur Inbetriebnahme!

- 1. Sofort nach der ersten Inbetriebnahme ist das Inbetriebnahmeprotokoll auszufüllen und durch Unterschrift zu bestätigen.
- 2. Das Inbetriebnahmeprotokoll muss innerhalb von 4 Wochen nach der ersten Inbetriebnahme bei Fischer Panda GmbH in Paderborn eingegangen sein.
- 3. Nach Erhalt des Inbetriebnahmeprotokolls wird von Fischer Panda die offizielle Garantiebestätigung ausgefertigt und den Kunden übersandt.
- 4. Bei anstehenden Garantieansprüchen muss das Dokument mit der Garantiebestätigung vorgelegt werden.

Werden die vorstehenden Auflagen nicht oder nur teilweise durchgeführt, so erlischt der Garantieanspruch.

1.5 Sicherheitshinweise - Sicherheit geht vor!

1.5.1 Der sichere Betrieb

Ein vorsichtiger Umgang mit der Maschine ist die beste Versicherung gegen einen Unfall. Lesen Sie das Handbuch sorgfältig durch und verstehen Sie es, bevor Sie die Maschine in Betrieb nehmen. Alle Bediener, ganz gleich, über wie viel Erfahrung sie verfügen, müssen dieses, sowie weitere zugehörige Handbücher, durchlesen, bevor die Maschine in Betrieb genommen, oder ein Anbaugerät angebracht wird. Der Besitzer ist dafür verantwortlich, dass alle Bediener diese Information erhalten und in die sichere Bedienung eingewiesen werden.

1.5.2 Die Sicherheitshinweise beachten!

Lesen und verstehen Sie dieses Handbuch sowie die Sicherheitshinweise auf dem Generator, bevor Sie versuchen, den Generator zu starten und in Betrieb zu nehmen. Erlernen Sie die Bedienung und arbeiten Sie sicher. Machen Sie sich mit dem Gerät und seinen Grenzen vertraut. Halten Sie den Generator in gutem Zustand.

1.5.3 Persönliche Schutzkleidung

Tragen Sie bei der Wartung und Reparatur der Maschine **keine** lose, zerrissene oder unförmige Kleidung, die an den Vorsprüngen hängen bleiben kann, oder mit Riemenscheiben, Kühlscheiben oder anderen drehenden Teilen in Berührung kommen kann, wodurch schwere Verletzungen verursacht werden können.

Tragen Sie bei der Arbeit angemessene Sicherheits- und Schutzkleidung.

Bedienen Sie den Generator nicht unter Einfluss von Alkohol, Medikamenten oder Drogen.

Tragen Sie keine Radio- oder Musikkopfhörer, während Sie die Maschine bedienen, warten oder reparieren.

1.5.4 Sauberkeit schützt

Halten Sie den Generator und seine Umgebung sauber.

Vor dem Reinigen ist der Generator abzuschalten und vor unbeabsichtigtem Starten zu sichern. Halten Sie den Generator frei von Schmutz, Fett und Abfällen. Lagern Sie brennbare Flüssigkeiten nur in geeigneten Behältern und mit genügend Abstand zum Generator. Überprüfen Sie die Leitungen regelmäßig auf Lecks und beseitigen Sie diese ggf. sofort.

1.5.5 Sicherer Umgang mit Kraftstoffen und Schmiermitteln

Halten Sie offenes Feuer von Kraftstoffen und Schmiermitteln fern.

Vor dem Auftanken und/oder Abschmieren stets den Generator abschalten und gegen unbeabsichtigtes Starten sichern.

Im Bereich von Kraftstoff und Generator nicht rauchen und offene Flammen und Funken vermeiden. Kraftstoff ist leicht entzündlich und unter bestimmten Bedingungen explosiv.

Nur an einem gut belüfteten und offenen Platz nachtanken. Falls Kraftstoff/Schmiermittel verschüttet wurde, Flüssigkeit sofort beseitigen.

Dieselkraftstoff nicht mit Benzin oder Alkohol mischen. Eine solche Mischung kann Feuer verursachen und schädigt den Generator.

Verwenden Sie nur zugelassene Kraftstoffbehälter und Tankanlagen. Alte Flaschen und Kanister sind nicht geeignet.

1.5.6 Auspuffgase und Feuerschutz

Motorabgase können, wenn sie sich sammeln, gesundheitsgefährdend sein. Stellen Sie sicher, dass die Generatorabgase entsprechend abgeleitet werden (dichtes System) und dass genügend Frischluft für den Generator und den Bediener zugeführt wird (Zwangsbelüftung).

Überprüfen Sie die Anlage regelmäßig auf Lecks und beseitigen Sie diese gegebenenfalls.

Abgase und abgasführende Teile sind sehr heiß, sie können unter Umständen Verbrennungen verursachen. Halten Sie den Generator und die Auspuffanlage stets frei von brennbaren Teilen.

Zur Vermeidung von Feuer stellen Sie sicher, dass elektrische Leitungen nicht kurzgeschlossen werden. Überprüfen Sie regelmäßig, dass alle Leitungen und Kabel in gutem Zustand sind und keine Scheuerstellen vorhanden sind. Blanke Drähte, offene Scheuerstellen, ausgefranste Isolierungen und lockere Kabelverbindungen können gefährliche Stromschläge, Kurzschlüsse und Brand verursachen.

Der Generator ist durch den Betreiber in das vorhandene Feuerschutzsystem einzubeziehen.

CALIFORNIA

Proposition 65 Warning

Diesel engine exhaust and some of its constituents are known to the State of California to cause cancer, birth defects, and other reproductive harm.

Abgase von Dieselmotoren und einige Bestandteile sind krebserregend und können Missbildungen und andere Gendefekte verursachen.

1.5.7 Vorsichtsmaßnahmen gegen Verbrennungen und Batterieexplosionen

Der Generator, die Kühl- und Schmierstoffe sowie der Kraftstoff können nach dem Betrieb des Generators heiß sein. Nehmen Sie sich vor heißen Komponenten wie z. B. auspuffführende Teile, Kühler, Schläuche und Motorblock während des Betriebes, und nachdem der Generator abgestellt wurde, in Acht.

Das Kühlsystem kann unter Druck stehen. Öffnen Sie das Kühlsystem nur, nachdem der Motor und die Kühlflüssigkeit abgekühlt sind. Tragen Sie entsprechende Schutzkleidung (z. B. Schutzbrille, Handschuhe).

Stellen Sie vor dem Betrieb sicher, dass das Kühlsystem verschlossen ist und alle Schlauchschellen fest angezogen sind.

Die Batterie stellt eine Explosionsgefahr dar, dies gilt sowohl für die Starterbatterie als auch für die Batteriebank der AGT-Generatoren. Wenn Batterien geladen werden, ist das dabei entstehende Wasserstoff-Sauerstoff Gemisch hoch explosiv (Knallgas).

Verwenden und laden Sie die Batterien nicht, wenn sich der Flüssigkeitsstand unter der MINIMUM Markierung befindet. Die Lebensdauer der Batterie wird dadurch stark vermindert, und es kann vermehrt zu Explosionen kommen. Füllen Sie den Flüssigkeitsstand umgehend zwischen dem Maximum- und Minimumstand auf.

Besonders während des Ladens sind Funken und offenes Feuer von den Batterien fernzuhalten. Stellen Sie sicher, dass die Batteriepole fest angeschlossen und nicht korrodiert sind um Funken zu vermeiden. Benutzen Sie entsprechendes Polfett.

Prüfen Sie die Ladung mit einem entsprechenden Voltmeter oder Säureheber. Ein Metallgegenstand über den Polen führt zu Kurzschluss, Batterieschädigung und hoher Explosionsgefahr.

Laden Sie keine gefrorenen Batterien. Vor einem externen Laden sind die Batterien auf +16 °C (61 °F) anzuwärmen.

1.5.8 Schützen Sie Hände und Körper vor drehenden Teilen!

Betreiben Sie den Generator nur mit geschlossener Kapsel.

Halten Sie Ihre Hände und Ihren Körper von drehenden Teilen, wie z.B. Keilriemen, Ventilatoren, Riemenscheiben und Schwungscheiben fern. Die Berührung kann ernsthafte Verletzungen verursachen.

Den Motor nicht ohne Sicherheitseinrichtungen laufen lassen. Vor dem Start alle Sicherheitseinrichtungen fest montieren und überprüfen.

1.5.9 Frostschutz und Entsorgung von Flüssigkeiten

Frostschutz enthält Gift. Um Verletzungen zu vermeiden, Gummihandschuhe tragen und im Falle eines Hautkontaktes sofort abwaschen. Mischen Sie verschiedene Frostschutzmittel nicht miteinander. Die Mischung kann eine chemische Reaktion verursachen, durch die schädliche Substanzen entstehen. Verwenden Sie nur von Fischer Panda zugelassenen Frostschutz.

Schützen Sie die Umwelt. Fangen Sie abgelassene Flüssigkeiten (Schmierstoffe, Frostschutz, Treibstoff) auf und entsorgen Sie diese ordnungsgemäß. Beachten Sie hierbei die Vorschriften des jeweiligen Landes. Sorgen Sie dafür, dass keine Flüssigkeiten (auch Tropfmengen) in den Boden, den Abfluss oder in Gewässer gelangen.

1.5.10 Durchführung von Sicherheitsüberprüfung und Wartung

Die Batterie vom Motor abklemmen, bevor Servicearbeiten durchgeführt werden. Befestigen Sie am Bedienpanel - sowohl Haupt- als auch entsprechende Slavepanel - je ein Schild mit der Aufschrift "NICHT IN BETRIEB SETZEN - WARTUNGSARBEITEN", um ungewolltes Starten zu vermeiden.

Um Funkenbildung durch einen unbeabsichtigten Kurzschluss zu vermeiden, stets das Massekabel (-) zuerst entfernen und zuletzt wieder anschließen. Beginnen Sie die Arbeiten erst, wenn der Generator mit allen Flüssigkeiten sowie das Abgassystem abgekühlt sind.

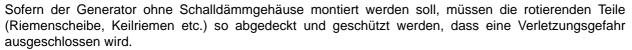
Verwenden Sie nur geeignetes Werkzeug und Vorrichtungen und machen Sie sich mit deren Funktionsweise vertraut, um Sekundärschäden und/oder Verletzungen zu vermeiden.

Halten Sie bei Wartungsarbeiten stets einen Feuerlöscher und einen Erste Hilfe Kasten bereit.

1.6 Warn- und Hinweisschilder

Halten Sie Warn- und Hinweisschilder sauber und lesbar.

Reinigen Sie die Schilder mit Wasser und Seife und trocknen Sie sie mit einem weichen Tuch.


Beschädigte oder fehlende Warn- und Hinweisschilder sind sofort zu ersetzen. Dies gilt auch beim Einbau von Ersatzteilen.

1.6.1 Besondere Hinweise und Gefahren bei Generatoren

Die elektrischen Installationen dürfen nur durch dafür ausgebildetes und geprüftes Personal vorgenommen werden!

Der Generator darf nicht mit abgenommener Abdeckhaube in Betrieb genommen werden.

Falls vor Ort ein Schalldämmumbau angefertigt wird, muss durch gut sichtbar angebrachte Schilder darauf hingewiesen werden, dass der Generator nur mit geschlossenem Schalldämmgehäuse eingeschaltet werden darf.

Alle Service-, Wartungs- oder Reparaturarbeiten dürfen nur bei stehendem Motor vorgenommen werden.

Elektrische Spannungen über 50 V (bei Batterieladern sogar schon bei mehr als 36 V) sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

1.6.1.1 Schutzleiter und Potenzialausgleich:

Elektrischer Strom über 50 V kann lebensgefährlich sein. Aus diesem Grunde werden Systeme mit einem Schutzleiter geerdet. In Verbindung mit einem RCD (FI-Schalter) wird im Fehlerfall die Stromversorgung abgetrennt.

Entsprechende Schutzmaßnahmen wie der RCD und entsprechende Sicherungen müssen kundenseitig vorhanden sein, um einen sicheren Betrieb des Generators zu gewährleisten.

1.6.1.2 Schutzleiter bei Panda AC Generatoren:

Serienmäßig ist der Generator "genullt" (Mittelpunkt und Masse sind im Generatorklemmkasten durch eine Brücke miteinander verbunden). Dies ist eine erste Grundsicherung, die, solange keine anderen Maßnahmen installiert sind, einen Schutz bietet. Sie ist vor allem für die Auslieferung und einen eventuell erforderlichen Probelauf gedacht.

Diese "Nullung" (PEN) ist nur wirksam, wenn alle Teile des elektrischen Systems auf einem gemeinsamen Potenzial "geerdet" sind. Die Brücke kann entfernt werden, wenn das aus installationstechnischen Gründen erforderlich ist und stattdessen ein anderes Schutzsystem eingerichtet worden ist.

Beim Betrieb des Generators liegt auch in der AC-Kontrollbox die volle Spannung an. Es muss deshalb unbedingt sichergestellt sein, dass die Kontrollbox geschlossen und sicher vor Berührung ist, wenn der Generator läuft.

Die Batterie muss immer abgeklemmt werden, wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

1.6.1.3 Bei Arbeiten am Generator alle Verbraucher abschalten

Um Schäden an den Geräten zu vermeiden, sind bei Arbeiten am Generator immer alle Verbraucher abzuschalten. Ferner muss das Halbleiterrelais in der AC-Kontrollbox abgeklemmt werden, um zu vermeiden, dass während der Einstellung die Boosterkondensatoren aktiviert werden können. Der Minuspol der Batterie soll abgeklemmt werden.

Die Fischer Panda AGT-Generatoren (und AGT-DE) besitzen keine Kondensatoren. Bei diesen Generatoren kann dieser Absatz übersprungen werden.

Achtung!: Wichtiger Hinweis

Zum Betrieb des Generators werden Kondensatoren benötigt. Diese erfüllen zwei unterschiedliche Funktionen:

- A) Die Betriebskondensatoren
- B) Die Startverstärkungskondensatoren (Booster)

Beide Gruppen befinden sich in der separaten AC-Kontrollbox.

Kondensatoren sind elektrische Speicher. Es kann vorkommen, dass an den Kontakten der Kondensatoren auch nach dem Trennen vom elektrischen Netz noch für einige Zeit eine hohe elektrische Spannung anliegt. Sicherheitshalber dürfen die Kontakte nicht berührt werden. Wenn Kondensatoren ausgewechselt oder geprüft werden sollen, soll man mit einem elektrischen Leiter durch einen Kurzschluss zwischen den Kontakten die evtl. noch gespeicherte Energie entladen.

Wenn der Generator auf normale Weise abgeschaltet wird, sind die Betriebskondensatoren über die Wicklung des Generators automatisch entladen. Die Boosterkondensatoren werden durch interne Entladungswiderstände entladen.

Sicherheitshalber müssen alle Kondensatoren vor Arbeiten an der AC-Kontrollbox durch Kurzschluss entladen werden.

1.6.1.4 Potenzialausgleich bei Panda AGT DC Generatoren

Weiterführende Informationen für Ihren Generator siehe Kapitel Installation.

1.6.1.5 Sicherheitshinweise bezüglich Kabel

Kabeltypen

Es wird empfohlen, dass Kabel verwendet werden, die sich an die Norm UL 1426 (BC-5W2) anlehnen, mit Typ 3 (ABYC Abschnitt E-11).

Kabelquerschnitt

Das Kabel muss unter Berücksichtigung der Stromstärke, Kabelart und Leiterlänge (vom positiven Stromquellenanschluss an das elektrische Gerät und zurück zum negativen Stromquellenanschluss) ausgewählt werden.

Kabelinstallation

Es wird empfohlen, dass ein selbstentwässerndes Kabelschutzrohr klassifiziert als V-2 oder besser im Einklang mit UL 94, in dem Bereich der Kabelführung im Inneren der Kapsel, installiert wird. Es ist darauf zu achten, dass die Kabelführung nicht an heiße Oberflächen wie Abgaskrümmer oder Motorölablassschraube entlang geführt wird, sondern möglichst frei von jeglicher Entstehung von Reibung und Quetschung.

Leere Seite / Intentionally blank

2. Im Notfall - Erste Hilfe / In case of emergency - First Aid

-		
	Erste Hilfe bei Unfällen durch Stromschläge	
	Falls jemand einen elektrischen Schlag erlitten hat, sollten diese 5 Schritte eingehalten werden.	
1	Versuchen Sie nicht, das Opfer zu berühren, solange der Generator läuft.	
2	Schalten Sie den Generator sofort ab.	
3	Wenn Sie den Generator nicht ausschalten können, benutzen Sie einen Holzstab, ein Seil oder einen anderen nicht leitenden Gegenstand, um die Person in Sicherheit zu bringen.	
4	Schicken Sie so schnell wie möglich nach Hilfe. (Notarzt rufen)	
5	Beginnen Sie sofort mit erforderlichen Erste-Hilfe Maßnahmen.	

2.1 Atmungsstillstand bei Erwachsenen

Versuchen Sie nicht, die hier dargestellten Beatmungstechniken anzuwenden, wenn Sie nicht dazu ausgebildet sind. Die Anwendung dieser Techniken durch ungeschultes Personal kann zu weiteren Verletzungen oder zum Tod des Opfers führen.

Warnung!:

1 Reagiert die Person? Person berühren oder vorsichtig schütteln. Ansprechen "Wie geht es Ihnen?"	2 "Hilfe!"rufen. Andere dazu auffordern, telefonisch Hilfe herbei zurufen.
3 Person auf den Rücken drehen. Drehen Sie das Opfer in Ihre Richtung, indem sie es langsam zu sich ziehen.	
4 Mund des Opfers öffnen Den Kopf zurück neigen und das Kinn anheben. Ansprechen: "Sind Sie in Ordnung?"	5 Achten sie auf die Atmung Für 3 bis 5 Sekunden auf die Atmung achten; durch Horchen und Fühlen.
6 Beatmen Sie 2 x mit vollem Atemzug. Kopf des Opfers im Nacken halten. Die Nase des Opfers zuhalten. Pressen sie ihren Mund fest auf den Mund des Opfers. Machen Sie zwei 1 - 1,5 Sekunden dauernde volle Atemzüge.	
7 Puls an der Halsschlagader prüfen Tasten sie 5 bis 10 Sekunden nach dem Puls.	8 Rufen Sie 112 zu Hilfe Beauftragen Sie jemanden, einen Krankenwagen anzurufen.
Mit der Wiederbeatmung beginnen. Kopf des Opfers im Nacken halten. Kinn des Opfers anheben. Die Nase des Opfers zuhalten. Alle 5 Sekunden beatmen. Zwischen den Zügen auf die Atmung achten; durch Horchen und Fühlen.	10 Minütlich den Puls prüfen. Kopf des Opfers dabei zurückgebeugt halten. 5 bis 10 Sekunden nach dem Puls fühlen. Wenn sie einen Puls, aber keine Atmung spüren, die Wiederbeatmung fortsetzen. Ist kein Puls zu spüren, mit Herzmassage beginnen.

3. Grundlagen

3.1 Bestimmungsgemäße Verwendung

Der Fischer Panda Generator dient der Erzeugung von elektrischem Strom aus Dieselkraftstoff.

Der Dieselkraftstoff wird in einem Verbrennungsmotor in mechanische Energie umgesetzt. Ein an den Motor angebauter Generator wandelt diese mechanische Energie in elektrische Energie um. Der Prozess wird durch die (evtl. externen) Komponenten Fernbedienpanel und VCS (Spannungs-Kontrollsystem) gesteuert und geregelt.

Für den Prozess sind ausreichend Kraftstoff und Verbrennungsluft erforderlich. Anfallende Abgase und Wärme müssen entsprechend ordnungsgemäß abgeführt werden.

Bei der Einspeisung der elektrischen Energie in ein elektrisches Netz sind die Vorgaben des Netzbetreibers/ Netzerstellers sowie die länderspeziefischen Richtlinien bzgl. Stromnetzen/Bordstromnetzen zu befolgen. Entsprechende Sicherheitseinrichtungen und Schaltungen müssen installiert werden.

Eine andere Verwendung als zuvor beschrieben führt zur Beschädigung dieses Produktes und des Stromnetzes inkl. Verbraucher, darüber hinaus ist dies mit Gefahren wie z.B. Kurzschluss etc. verbunden. Das gesamte Produkt darf nicht geändert bzw. umgebaut und das Gehäuse beim Betrieb nicht geöffnet werden! Die Sicherheitshinweise sind unbedingt zu beachten!

3.2 Zielsetzung des Handbuches und Erklärung der Personenkreise

Das Handbuch ist die Arbeitsanweisung und Bedienungsanweisung für den Betreiber und den Bediener von Fischer Panda Generatoren.

Das Handbuch dient als Grundlage und Leitfaden für die ordnungsgemäße Installation und Wartung von Fischer Panda Generatoren. Es ersetzt nicht die fachliche Beurteilung und Auslegung sowie die Anpassung der Installation an örtliche Begebenheiten und den nationalen/internationalen Vorschriften. Alle Arbeiten sind nach dem Stand der Technik auszuführen.

3.2.1 Fachkräfte

Als Fachkräfte für die mechanischen Komponenten gelten ausgebildete KFZ-Mechaniker oder Personen mit vergleichbarer Qualifikation.

Als Fachkräfte für die elektrischen Komponenten gelten Fachelektriker, Elektrotechniker oder Personen mit vergleichbarer Qualifikation.

Nach der Installation hat die Fachkraft den Betreiber in die Bedienung und Wartung des Generators einzuweisen. Er muss den Betreiber über vorliegende Gefahren beim Betrieb hinweisen.

3.2.2 Betreiber

Als Betreiber gelten die für den Betrieb des Generators verantwortliche Personen.

Nach der Installation muss der Betreiber im Umgang und der Bedienung des Generators eingewiesen werden. Hierzu zählen insbesondere die Gefahren während des Betriebes, verschiedene Betriebszustände und die Einweisung in die Wartung des Generators.

Der Betreiber hat das Handbuch vollständig zu lesen und die angegebenen Sicherheitshinweise und Vorschriften zu beachten.

3.2.3 Bediener

Als Bediener gelten Personen, die vom Betreiber eingesetzt werden, den Generator zu bedienen und zu betreiben.

Es ist vom Betreiber sicherzustellen, dass der Bediener das Handbuch vollständig gelesen hat und dass die entsprechenden Sicherheitshinweise und Vorschriften beachtet werden. Der Bediener ist entsprechend seinen Aufgabengebiet vom Betreiber zu schulen und fachkundig zu machen. Dies gilt insbesondere für den Bereich Wartung.

3.3 Komponenten des i-Systems

Panda i Generator
 Permanentmagnet-Generator

2. Panel Panda iControl mit Steuerplatine am Generator

Fig. 3.3-2: iControl Panel

3. Panda PMGi Inverter AC/AC

Fig. 3.3-4: Handbuch

4. Fischer Panda Handbuch

Das Fischer Panda Handbuch umfasst folgende Komponenten:

- Klarsichthülle mit allgemeinen Informationen, Garantiebedingungen, Einbauprotokollen und Serviceliste.
- Generatorhandbuch mit angehängtem Handbuch des Fernbedienpanels
- Ersatzteilkatalog "Installation & Service Guide"
- Motorhandbuch des Motorenherstellers
- Schaltplan des Generators

Beispielbild

Optionales Zubehör

Zum optionalen Zubehör gehören z.B.:

- Krafstoffpumpe
- · Installationskits

3.4 Öffnen der Fischer Panda Transportbox

3.4.1 Verschraubte Fischer Panda Transportbox

- 1. Lösen der Verschraubungen Deckel-Seitenwände
- 2. Abnehmen des Deckels
- 3. Herausnehmen der losen Zubehörteile
- 4. Lösen der Verschraubungen Seitenwände-Bodenpalette
- 5. Abnehmen der Seitenwände
- 6. Lösen der Gerätefixierung

3.4.2 Fischer Panda Transportbox mit Metalllaschenverschluss

- 1. Aufbiegen der Metall-Laschenverschlüsse am Transportboxdeckel
- 2. Abnehmen des Deckels
- 3. Herausnehmen der losen Zubehörteile
- 4. Aufbiegen der Metall-Laschenverschlüsse am Transportboxboden
- 5. Abnehmen der Seitenwände
- 6. Lösen der Gerätefixierung

3.5 Öffnen der Schalldämmkapsel aus GFK

GFK Kapsel mit Laschenverschlüssen

Beispielbild

Zum Öffnen der Schalldämmkapsel müssen die Laschenverschlüsse in Pfeilrichtung gezogen und vom Verschlussunterteil abgehoben werden. Nach dem Öffnen aller Verschlüsse können die Kapseloberteile vom Unterteil abgehoben werden.

Beispielbild

3.6 Transport und Verlastung

3.6.1 Transport des Generators

- Der Generator darf nur aufrecht stehend transportiert werden.
- Zum Transport ist die Fischer Panda Transsportbox f
 ür den Generator zu verwenden. Der Generator ist auf dem Boden der Box sicher zu fixieren.

- Beim Verladen muss ein entsprechendes Flurförderfahrzeug verwendet werden.
- Je nach Transportweg (z. B. Luftfracht), sind evtl. die Generatorflüssigkeiten (Kühlmittel, Motoröl, Kraftstoff) abzulassen. Entsprechende Vermerke und Warnhinweise müssen auf der Transportverpackung angebracht werden.

3.6.2 Verlasten des Generators.

Zum Verlasten des Generators sind entsprechende Ringschrauben in die Bohrungen der Tragschienen zu montieren. Die Traglast jeder Ringöse muss mindestens dem Generatorgewicht entsprechen.

Beim Verlasten ist eine entsprechende Hebetraverse zu verwenden.

Fig. 3.6.2-1: Beispiel Hebetraverse

3.7 Spezielle Wartungshinweise und Maßnahmen bei langen Stillstandzeiten und Außerbetriebnahme

Die Konservierung und Lagerung muss den Gegebenheiten Hinweis: und Lagerbedingungen vor Ort angepasst werden.

Fischer Panda haftet nicht für Schäden, die durch falsche Lagerung/Konservierung entstehen.

Die Stillstandszeiten werden in folgende Gruppen unterteilt:

- Kurzfristiger Stillstand (1 bis 3 Monate).
- Mittelfristiger Stillstand / Überwinterung (3 bis 6 Monate).
- Langfristiger Stillstand / Außerbetriebnahme (mehr als 6 Monate).

3.7.1 Hinweise für die Starterbatterie bei längeren Stillstandszeiten

Starterbatterien Hinweis:

Selbstentladung von Batterien ist ein physikalischer und chemischer Vorgang und kann auch durch das Abklemmen der Batterie nicht vermieden werden.

- Bei längeren Stillstandzeiten ist die Batterie vom Aggregat abzuklemmen.
- Batterie regelmäßig laden. Hinweise des Batterieherstellers befolgen.

Je nach Batterietyp ist der Säurestand vor dem Laden zu prüfen und gegebenenfalls jede Zelle mit destilliertem Wasser bis zur Markierung aufzufüllen.

Heutige Starterbatterien sind in der Regel wartungsfrei.

Eine Tiefentladung schädigt die Batterie und kann zur Unbrauchbarkeit führen.

Batterie sauber und trocken halten. Batteriepole (+ und -) und Klemmen regelmäßig reinigen und mit einem säurefreien und säurebeständigen Fett einfetten. Beim Zusammenbau auf guten Kontakt der Klemmanschlüsse achten.

Generelle Grenzwerte für Blei-Säurebatterien:

2,1 V / Zelle entspricht Batterie voll (geladen).

1,95 V / Zelle entspricht Batterie leer - nachladen.

Für eine 12 V gilt:

- 11,7 V untere Ruhespannung (Batterie leer), Batterie nachladen.
- 12,6 V obere Ruhespannung (Batterie voll) Erhaltungsladung bei voller Batterie 13,2 V.

Für eine 24 V gilt:

- 23,4 V untere Ruhespannung (Batterie leer), Batterie nachladen.
- 25,2 V obere Ruhespannung (Batterie voll) Erhaltungsladung bei voller Batterie 26,4 V.

Diese Werte sind auf eine Batterietemperatur von 20-25 °C bezogen. Beachten Sie die Angaben des Batterieherstellers.

Fischer Panda Empfehlung:

Hinweis:

 Batterietrennschalter einbauen und an der Maschine in Off-Stellung drehen. (Batteriekreis trennen)

- Der Batteriepluspol nahe an der Batterie absichern
- Kontakte regelmäßig auf Korrosion prüfen.

3.7.2 Maßnahmen bei kurzfristigem Stillstand

Kurzfristiger Stillstand (1 bis 3 Monate)

- Batterieladezustand mittels Ruhespannung messen.
- Bei Stillstandzeiten >7 Tage Batterie abklemmen (z. B. Batteriehauptschalter auf 0 Stellung)
- Innerhalb von 2 Monaten die Batterie überprüfen und den Motor für mindestens 10 min warmlaufen lassen.
- Diesel im Tank auffüllen bis 100 % (Stand voll).

3.7.3 Maßnahmen bei mittelfristigem Stillstand / Überwinterung

Mittelfristiger Stillstand (3 Monate bis 6 Monate)

3.7.3.1 Maßnahmen der Konservierung:

- Frostschutzgrad Kühlwasser prüfen und ggf. auffüllen.

Das Frostschutzmittel darf nicht älter als 2 Jahre sein. Der Gehalt an Frostschutzmittel soll zwischen 40 % und 60 % liegen, um den Korrosionsschutz im Kühlwasserkreislauf zu sichern. Ggf. ist Kühlmittel aufzufüllen.

Sollte das Kühlwasser abgelassen werden, z.B. nach der Motor Konservierung, darf kein Wasser im Motor während der Stillstandszeit verbleiben. An der Bedieneinheit muss ein entsprechender Hinweis "KEIN KÜHLWASSER" angebracht werden.

- · Motorenöl wie vorgeschrieben ablassen. Motor mit Konservierungsöl bis Maxstand am Ölpeilstab auffüllen.
- Diesel im Tank ablassen und mit einem Konservierungsgemisch (90 % Diesel und 10 % Konservierungsöl) befüllen (Stand voll).

Motor drehen lassen aber nicht starten.

 Keilriemen wie vorgeschrieben demontieren und verpackt an einem trockenen Ort lagern. Vor UV Strahlung schützen.

Lichtmaschinenöffnungen abdecken.

Achtung!

Reinigungsflüssigkeiten und Konservierungsmittel dürfen nicht in die Lichtmaschine eindringen. Gefahr der Zerstörung der Lichtmaschine.

- · Motor laut Herstellerangabe reinigen.
- Motorteile und Keilriemenscheiben mit Konservierungsmittel einsprühen.
- Luftfiltergehäuse reinigen und mit Konservierungsmittel einsprühen (nur Metallgehäuse).
- Ansaug- und Abgasöffnungen verschließen (z. B. mit Tape oder Endkappen).

Vor der Wiederinbetriebnahme eine Entkonservierung Achtung! durchführen.

3.7.3.2 Maßnahmen der Entkonservierung nach mittelfristigem Stillstand (3 Monate bis 6 Monate)

- Batterieladezustand prüfen und gegebenenfalls aufladen. Hinweise des Batterieherstellers befolgen.
- Frostschutzgrad Kühlwasser und Kühlwasserstand prüfen, ggf. auffüllen.
- Motoröl ablassen. Ölfilter und Motoröl gemäß der Spezifikation erneuern.
- Konservierungsmittel des Motors mit Petroleumbenzin entfernen.
- Keilriemenscheiben entfetten und Keilriemen ordnungsgemäß montieren. Keilriemenspannung prüfen!
- Falls vorhanden, Turboladeröldruckleitung lösen und sauberes Motoröl in Kanal füllen.
- Motorstopphebel in Nullförderung halten und Motor mehrmals von Hand durchdrehen.
- Luftfiltergehäuse mit Petroliumbenzin reinigen, Luftfilter prüfen und ggf. erneuern.
- Abdeckungen der Abgasöffnung und der Ansaugöffnungen entfernen.
- Batterie anklemmen. Batteriehauptschalter schließen.
- Stopphebel am Generatormotor in Nullposition halten und Anlasser für ca. 10 Sekunden starten. Danach 10 Sekunden Pause. Diesen Vorgang 2 x wiederholen.
- Sichtprüfung des Generators gemäß einer Erstinbetriebnahme und Generator in Betrieb setzen.

3.7.4 Maßnahmen bei langfristigem Stillstand / Außerbetriebnahme

Stillstandszeiten (mehr als 6 Monate)

3.7.4.1 Maßnahmen der Konservierung:

• Batterieladezustand prüfen und gegebenenfalls regelmäßig ca. alle 3 Monate aufladen. Hinweise des Batterieherstellers befolgen.

· Frostschutzgrad Kühlwasser prüfen und ggf. auffüllen.

Das Frostschutzmittel darf nicht älter wie 2 Jahre sein. Der Gehalt an Frostschutzmittel soll zwischen 40 % und 60 % liegen, um den Korrosionsschutz im Kühlwasserkreislauf zu sichern. Ggf. ist Kühlmittel aufzufüllen.

Sollte das Kühlwasser abgelassen werden, z.B. nach der Motor-Konservierung, darf kein Wasser im Motor während der Stillstandszeit verbleiben. An der Bedieneinheit muss ein entsprechender Hinweis "KEIN KÜHLWASSER" angebracht werden.

- Motorenöl wie vorgeschrieben ablassen. Motor mit Konservierungsöl bis Maximalstand am Ölpeilstab auffüllen.
- Diesel im Tank ablassen und mit einem Konservierungsgemisch (90 % Diesel und 10 % Konservierungsöl) befüllen (Stand voll).

Motor drehen lassen, aber nicht starten.

- Keilriemen wie vorgeschrieben demontieren und verpackt an einem trockenen Ort lagern. Vor UV Strahlung schützen.
- Batterie abklemmen. Pole mit säurefreiem Fett benetzen.

Lichtmaschinenöffnungen abdecken.

Achtung!

Reinigungsflüssigkeiten und Konservierungsmittel dürfen nicht in die Lichtmaschine eindringen. Gefahr der Zerstörung der Lichtmaschine.

- · Motor laut Herstellerangabe reinigen.
- Motorteile und Keilriemenscheiben mit Konservierungsmittel einsprühen.
- Luftfiltergehäuse reinigen und mit Konservierungsmittel einsprühen (nur Metallgehäuse).
- Abgasturbolader (wenn vorhanden) mit Konservierungsmittel ansaug- und abgasseitig einsprühen und Leitungen wieder anschließen.
- Ventildeckel entfernen und mit Konservierungsöl Innenseite Ventildeckel, Ventilschäfte, Federn Kipphebel etc. einsprühen.
- Einspritzdüsen entfernen und Zylinderraum mit Konservierungsöl benetzen. Stopphebel in Richtung Nullförderung halten und Motor von Hand mehrmals durchdrehen. Einspritzdüsen mit neuen Dichtungen (bei einer Betriebsdauer von min. 100 Stunden nach dem letzten Wechsel) wieder einschrauben. Drehmomente beachten.
- Kühlerdeckel und Tankdeckel bzw. Kühlerdeckel am Ausgleichsbehälter leicht mit Konservierungsmittel einsprühen und wieder aufsetzen.
- Ansaug- und Abgasöffnungen verschließen (z. B. mit Tape oder Endkappen).

Bei Lagerung länger als 12 Monate, ist die Konservierung jährlich zu überprüfen und ggf. zu ergänzen. Hinweis:

Vor der Wiederinbetriebnahme eine Entkonservierung durchführen.

Achtung!

3.7.4.2 Maßnahmen der Entkonservierung nach langfristigem Stillstand / wieder Inbetriebnahme als 6 Monate):

- Batterieladezustand prüfen und gegebenenfalls aufladen. Hinweise des Batterieherstellers befolgen.
- Frostschutzgrad Kühlwasser und Kühlwasserstand prüfen, ggf. auffüllen.
- Motoröl ablassen. Ölfilter und Öl gemäß Spezifikation erneuern.
- Konservierungsmittel des Motors mit Petroleumbenzin entfernen.

- Keilriemenscheiben entfetten und Keilriemen ordnungsgemäß montieren. Keilriemenspannung prüfen!
- Falls vorhanden Turboladeröldruckleitung lösen und sauberes Motoröl in Kanal füllen.
- Motorstopphebel in Nullförderung halten und Motor mehrmals von Hand durchdrehen.
- · Luftfiltergehäuse mit Petroliumbenzin reinigen, Luftfilter prüfen und ggf. erneuern.
- Abdeckungen der Abgasöffnung und der Ansaugöffnungen entfernen.
- Batterie anklemmen. Batteriehauptschalter schließen.
- Stopphebel am Generatormotor in Nullposition halten und Anlasser für ca. 10 Sekunden starten. Danach 10 Sekunden Pause. Diesen Vorgang 2 x wiederholen.
- Sichtprüfung des Generators gemäß einer Erstinbetriebnahme und Generator in Betrieb setzen.

Fischer Panda Empfehlung:

Hinweis:

Nach einem langfristigen Stillstand sollte eine vollständige 150 h Inspektion It. Inspektionsliste durchgeführt werden.

Leere Seite / Intentionally blank

Seite/Page 30 Kapitel/Chapter 3: Grundlagen 20.8.19

4. Panda 5000i PMS Generator

4.1 Lage des Typenschildes

Fig. 4.1-1: Typenschild am Generator

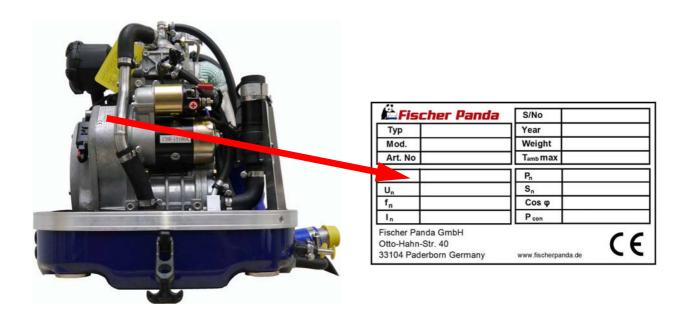
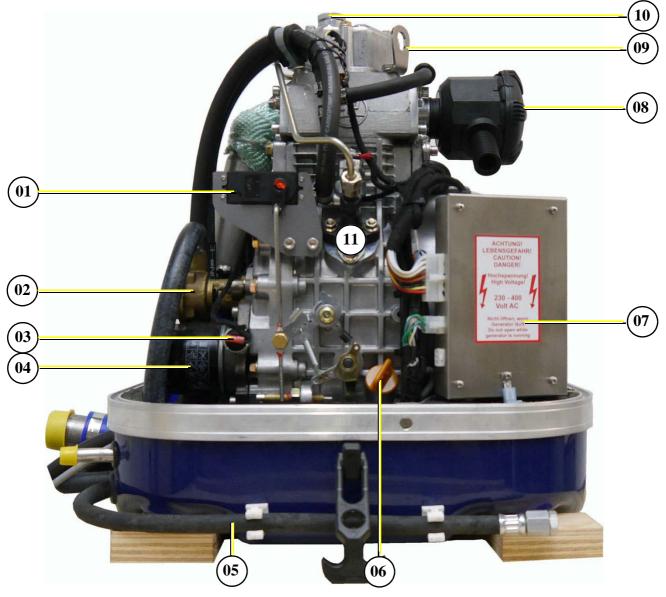


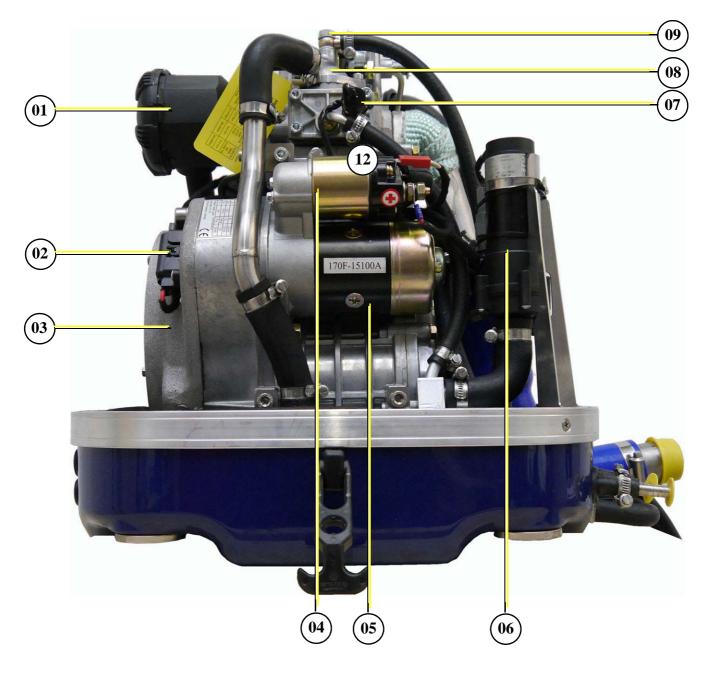
Fig. 4.1-2: Beschreibung des Typenschildes



4.2 Beschreibung des Generators

4.2.1 Seitenansicht rechts

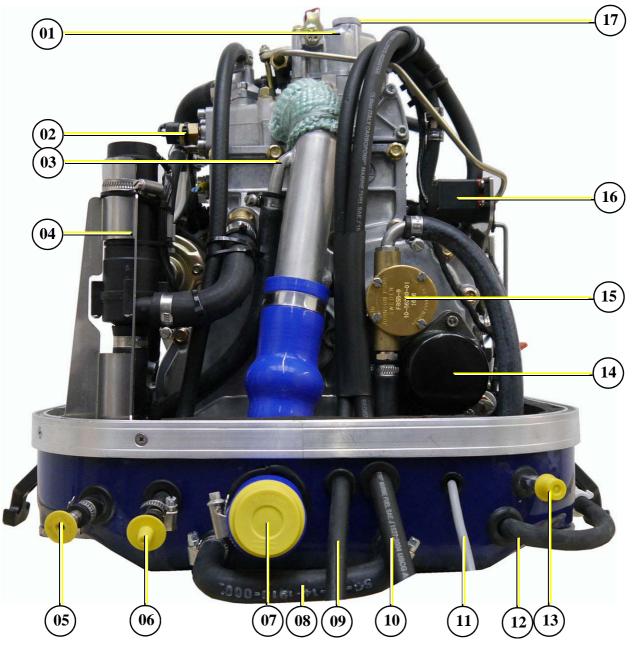
Fig. 4.2.1-1: Seitenansicht rechts


- 01) Actuator (servo)
- 02) Seewasserpumpe
- 03) Öldruckschalter
- 04) Ölfilter
- 05) Ölablassschlauch
- 06) Ölpeilstab

- 07) Gehäuse mit iControl Mainboard (Nicht öffnen)
- 08) Luftfiltergehäuse
- 09) Hebeöse
- 10) Öleinfüllstutzen
- 11) Einspritzpumpe

4.2.2 Seitenansicht links

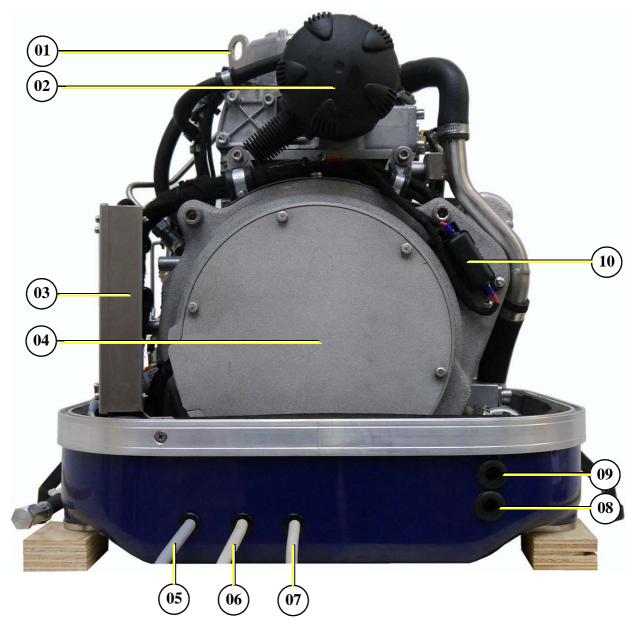
Fig. 4.2.2-1: Seitenansicht links


- 01) Luftfiltergehäuse
- 02) DC-Sicherung
- 03) Generatorgehäuse mit Wicklung
- 04) Magnetschalter für elekt. Anlasser
- 05) Elektrischer Anlasser

- 06) Elektrische Frischwassserpumpe
- 07) Temperatursensor am Zylinderkopf
- 08) Thermostatgehäuse
- 09) Entlüftungsschraube am Thermostatgehäuse

4.2.3 Frontansicht

Fig. 4.2.3-1: Frontansicht


- 01) Ventildeckel
- 02) Thermosensor am Zylibnderkopf
- 03) Seewassereinpritzdüse
- 04) Frischwasserpumpe
- 05) Kühlmittelvorlauf aus dem externen Ausgleichsgefäß
- 06) Kühlmittel Entlüftungsleitung zum externen Ausgleichsgefäß
- 07) Abgas Ausgang
- 08) Anschluss für das externe Belüftungsventil
- 09) Kraftstoff Rücklauf

- 10) Kraftstoff Vorlauf
- 11) Kabel für Kraftstoffpumpe
- 12) Ölablassschlauch
- 13) Seewassereingang
- 14) Ölfilter
- 15) Seewasserpumpe
- 16) Actuator (servo)
- 17) Öleinfüllstutzen

4.2.4 Rückansicht

Fig. 4.2.4-1: Rückansicht


- 01) Hebeöse
- 02) Luftfilter
- 03) Gehäuse mit iControl Mainboard (Nicht öffnen)
- 04) Generatorgehäuse Stirndeckel
- 05) Kabel Lastausgang zum Inverter PMGi

- 06) Kabel Control zum Inverter PMGi
- 07) Kabel zum Fernbedienpanel
- 08) Durchführung für Batteriekabel
- 09) Durchführung für Batteriekabel
- 10) DC Sicherung

4.2.5 Anschlusspunkte bei der MPL Schalldämmkapsel

Fig. 4.2.5-1: Anschlusspunkte bei der MPL Schalldämmkapsel

- 01) Kühlmittel Entlüftungsleitung zum externen Ausgleichsgefäß
- 02) Kühlmittelvorlauf aus dem externen Ausgleichsgefäß
- 03) Kraftstoff Vorlauf
- 04) Kraftstoff Rücklauf
- 05) Ölablassschlauch
- 06) Abgas Ausgang
- 07) Anschluss für das externe Belüftungsventil
- 08) Seewassereingang

- 09) Kabel für Kraftstoffpumpe
- 10) Kabel Lastausgang zum Inverter PMGi
- 11) Kabel zum Fernbedienpanel
- 12) Kabel Control zum Inverter PMGi
- 13) Kabel für Starterbatterie (-)
- 14) Kabel für Starterbatterie (+)

4.3 Beschreibung der Komponenten und Kreisläufe

4.4 Das Panda iControl2-Panel

Das Bedienpanel "Panda iControl2-Panel" ist die Bedien- und Anzeigeeinheit der Panda iControl2-Steuerung und stellt die Schnittstelle zwischen dem Bediener und dem Panda iControl2-Steuergerät dar. Auf dem integrierten Anzeigedisplay werden neben wichtigen Daten des Systems auch Warnungen und Fehlermeldungen dargestellt.

Für die Bedienung der Panda iControl2-Steuerung stehen auf dem Bedienpanel vier Taster zur Verfügung:

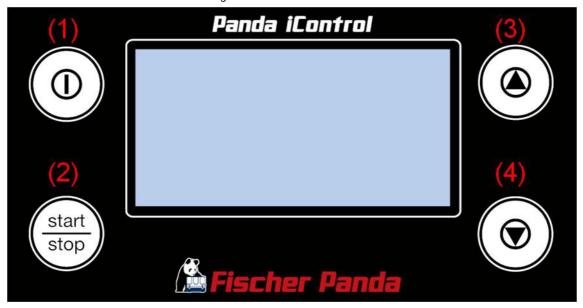


Fig. 4.4-1: Panda iControl 2 Panel

- 1. On-Off-Taste: Ein- und Ausschalten der Panda iControl2-Steuerung
- 2. Start-/Stop-Taste: Starten und Stoppen des Generators, Bestätigen von Werten in Auswahlmenüs (Enter Taste)
- 3. Cursor-Up-Taste: Umschalten von Displayseiten (aufwärts), Werte in Auswahlmenüs hochzählen
- 4. Cursor-Down-Taste: Umschalten von Displayseiten (abwärts), Werte in Auswahlmenüs runterzählen.

4.4.1 Das Kühlsystem

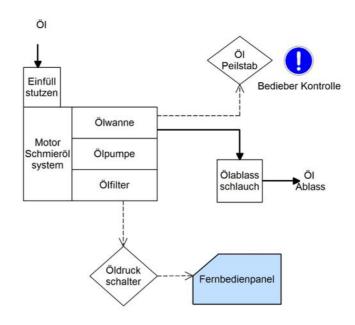
Kühlwasser einfüllstutzen Seewasser Eingang Externes Ausgleichs gefäß Externes AC-alternator Seeventil externer Seewasser Filter Thermostat gehäuse Abgas rümme Motor FP320 Seewasser Seewasser Abgas Impellerpumpe mix Wasser pumpe externer Wasser externes Belüftungsventi sammler Wärmetauscher Frischwasserseite externe externer Abgas/ Wärmetauscher Seewasserseite Wasser Impellerfilter renneinhei Wärmetauscher Seewasserseite Abgas Ausgang raw water raw water exhaust Seewasser exhaust Augang optional mixture fresh water

Fig. 4.4.1-1: Das Kühlsystem

4.4.2 Das Kraftstoffsystem

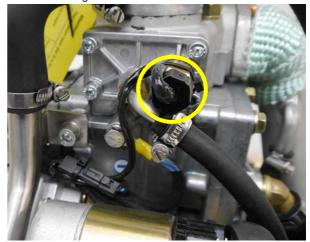
Fig. 4.4.2-1: Das Kraftstoffsystem Kraftstoff Einfüllstutzen Tank Craftstoffpump Kraftstoff fuel out Vorlauf combustion air filter air intake housing Magnet ventil Einspritz Motor FP320 pumpe Einspritz düse Wassergekühlter Abgaskrümmer mixing raw water fuel exhaust elbow exhaust mixture Abgas/Wasser combustion air raw water Gemisch externer Wasser sammler externe bgas/Wasse renneinheit Abgas Ausgang Seewasser Ausgang optional

20.8.19


4.4.3 Komponenten des elektrischen Systems

4.4.4 Das Schmierölsystem

Fig. 4.4.4-1: Das Schmierölsystem



4.4.5 Sensoren und Schalter zur Betriebsüberwachung

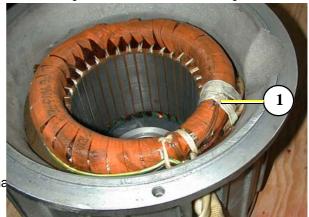
Thermoschalter am Motor

Der Schalter überwacht die Motortemperatur.

Fig. 4.4.5-1: Thermoschalter am Motor

Thermosensor am Abgaskrümmer

Wenn die Impellerpumpe ausfällt und kein Seewasser mehr liefert, wird dieser Punkt sehr heiß.


Fig. 4.4.5-2: Thermosensor am Abgaskrümmer

Thermosensor Wicklung

Ein weiterer Sensor ist zur Überwachung in der Wicklung verbaut.

Fig. 4.4.5-3: Thermosensor Wicklung

Leere Seite / Intentiona

Öldruckschalter

Um das Motoröl system zu überwachen, wird ein Öldruckschalter eingesetzt.

Fig. 4.4.5-4: Öldruckschalter

5. Installation

Alle Anschlussleitungen und Anweisungen für den Einbau sind für "Standard" Einbausituationen ausgelegt und ausreichend.

Da Fischer Panda die genaue Einbau- und Betriebssituation (z. B. besondere Fahrzeugformel, hohe Fahrgeschwindigkeiten und besondere Einsatzbedingungen o. ä.) nicht bekannt sind, kann diese Installationsvorschrift als Vorlage und Beispiel dienen. Die Installation muss von einem entsprechenden Fachmann nach den örtlichen Begebenheiten und Vorschriften entsprechend angepasst und ausgeführt werden.

Schäden durch eine falsche, nicht angepasste Installation/ Einbau sind nicht durch die Garantie abgedeckt. Achtung!: System richtig auslegen.

5.1 Personal

Die hier beschriebene Installation darf nur von speziell ausgebildetem Fachpersonal oder durch Vertragswerkstätten (Fischer Panda Service Points) ausgeführt werden.

Um Schäden an den Geräten zu vermeiden, sind bei Arbeiten am Generator immer alle Verbraucher abzuschalten.

Achtung!: Alle Verbraucher abschalten.

5.2 Aufstellungsort

5.2.1 Vorbemerkungen

- Frischluftzufuhr für Verbrennungsluft muss ausreichend sein.
- Es muss sichergestellt werden, dass die Kühlluftzufuhr von unten bzw. seitlich ausreichend ist.
- · Seeventil muss bei Betrieb geöffnet sein.
- Der Generator darf nur von Fachpersonal geöffnet werden.
- Bedienung des Generators nur durch eingewiesenes Personal.

5.2.2 Einbauort und Fundament

Da die Fischer Panda Generatoren wegen ihrer besonders geringen Außenabmessungen den Einbau auch in sehr beengten Raumverhältnissen ermöglichen, werden sie manchmal an schwer zugänglichen Stellen installiert. Es ist zu berücksichtigen, dass auch ein wartungsarmer Generator zumindest von der Stirnseite (Schwungrad, Keilriemen, Impellerpumpe) und der Serviceseite (Stellmotor, Ölpeilstab) gut zugänglich sein muss, da z. B. trotz der automatischen Öldruckkontrolle eine regelmäßige Überprüfung des Motorölstands erforderlich ist.

Der Generator sollte nicht in der Nähe von leichten Wänden montiert werden, die durch Luftschall in Resonanzschwingungen geraten können. Ist dies nicht anders möglich, sollte man diese Flächen mit 1 mm Bleifolie auskleiden, da so die Masse und damit das Schwingverhalten verändert wird.

Man sollte vermeiden, den Generator auf einer glatten Fläche mit geringer Masse (z.B. Sperrholzplatte) zu montieren. Dies wirkt im ungünstigen Fall wie ein Verstärker auf die Luft-Schallwellen. Eine Verbesserung erreicht

man dadurch, dass man diese Flächen durch Rippen verstärkt. Außerdem sollten auch Durchbrüche gesägt werden, welche die Fläche unterbrechen. Das Verkleiden der umgebenden Wände mit einer Schwerschicht (z. B. Blei) plus Schaumstoff verbessert die Bedingungen zusätzlich.

Da der Motor seine Verbrennungsluft über mehrere Bohrungen im Kapselboden ansaugt, muss der Kapselboden mit ausreichendem Freiraum zum Fundament montiert werden, um die Luftzufuhr zu gewährleisten (mindestens 12 mm (1/2")).

Der Generator saugt seine Luft aus dem umgebenden Maschinenraum. Daher muss dafür gesorgt werden, dass ausreichende Belüftungsöffnungen vorhanden sind, so dass der Generator nicht überhitzen kann.

Die Ausgangsleistung des Generators ist auf folgende Daten bezogen:

Umgebungstemperatur: 20°C

Luftdruck:1000 mbar (100 m über NN)

Seewassertemperatur: 20°C

Rel. Luftfeuchte: 30% zur Umgebungstemperatur

Kraftstofftemperatur: bis zu 20°C

Abgasgegendruck: 80 mbar (Kapselauslass)

Abweichungen von diesen Daten, z.B. eine Umgebungstemperatur von 40°C aufgrund des Einbaus in einen Maschinenraum/Fahrzeug mit zu geringer Belüftung, führen zu einer Änderung der Ausgangsleistung (Derating).

5.2.3 Hinweis zur optimalen Schalldämmung

Das geeignete Fundament besteht aus einem stabilen Rahmen, auf den der Generator mittels Schwingungsdämpfern befestigt wird. Da das Aggregat so nach unten "frei" ist, kann die Verbrennungsluft ungehindert angesaugt werden. Außerdem entfallen die Vibrationen, die bei einem geschlossenen Boden auftreten würden.

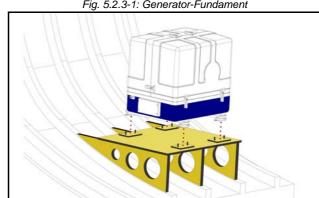


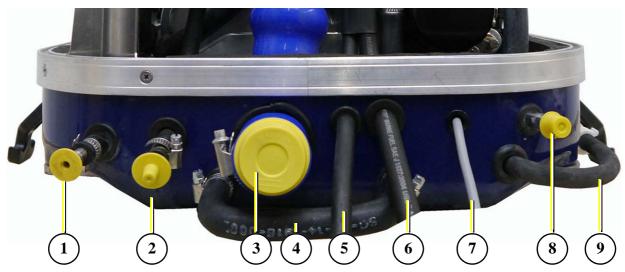
Fig. 5.2.3-1: Generator-Fundament

Anschlüsse am Generator - Übersichtsschema 5.3

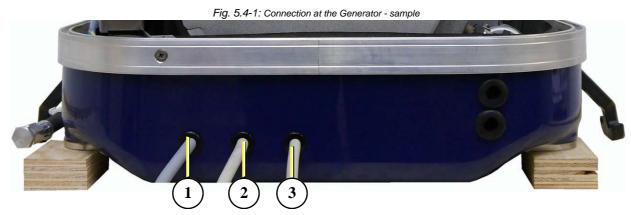
Die Lage der Anschlüsse kann je nach Generator unterschiedlich sein. Die entsprechenden Kabel und Anschlusspunkte sind am Generator bezeichnet.

Innerhalb der Kapsel sind alle elektrischen Zuleitungen fest am Motor und am Generator angeschlossen. Dies gilt auch für die Kraftstoffleitungen und die Kühlwasserzuleitungen.

Die elektrischen Anschlüsse müssen unbedingt nach den jeweils gültigen Vorschriften verlegt und ausgeführt werden. Dies gilt auch für die verwendeten Kabelmaterialien. Die mitgelieferten Kabel sind nur für eine "geschützte" Verlegung (z. B. im Rohr) bei einer Temperatur bis max. 70 ° C (160 ° F) zugelassen. Das Bordnetz muss ebenfalls mit allen erforderlichen Sicherungen ausgestattet werden.


Vor der Installation bzw. Bearbeitung unbedingt das Kapitel "Sicherheitshinweise - Sicherheit geht vor!" auf Seite 13 lesen

ACHTUNG!



5.4 Anschlüsse am Generator - Beispiel

- 1. Vorlauf vom externen Ausgleichsgefäß
- 2. Entlüftung zum externen Ausgleichsgefäß
- 3. Abgas Ausgang
- 4. Anschluss für externes belüftungsventil
- 5. Kraftstoff Rücklauf

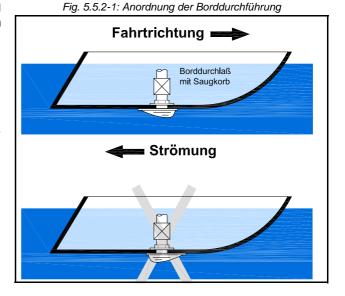
- 6. Kraftstoff Vortlauf
- 7. Kabel für Kraftstoffpumpe
- 8. Seewasser Eingang
- 9. Ölablassschlauch

- 1. Kabel Lastausgang zum PMGi Inverter
- 2. Kabel Control zum PMGi Inverter

3. Kabel für das Fernbedienpanel

5.5 Anschluss des Kühlwassersystems - Seewasser

5.5.1 Allgemeine Hinweise


Der Generator muss mit einer separaten Zuleitung versorgt werden, und sollte nicht an das Kühlwassersystem anderer Motoren angeschlossen werden. Die folgenden Installationsvorschriften müssen unbedingt beachtet werden:

5.5.2 Anordnung der Borddurchführung bei Yachten - Schema

Es ist auf Yachten üblich, für die Kühlwasseransaugung einen Borddurchlass mit "Saugkorb" zu verwenden. Um den Wasserzulauf zu verstärken, wird der Saugkorb oft gegen die Fahrtrichtung montiert.

Dieser Saugkorb darf beim Generator auf keinen Fall in die Fahrtrichtung zeigen, da sich bei schneller Fahrt ein derartiger Gegendruck bilden kann, dass Seewasser durch den Impeller gedrückt wird und den Generator unter Wasser setzt.

5.5.3 Qualität der Seewasseransaugleitung

Um den Ansaugwiderstand in der Leitung zur Pumpe so niedrig wie möglich zu halten, muss der Seewasserzulaufschlauch einen Querschnitt von mindestens den Innendurchmesser des Seewasseranschlusses aufweisen. Das gilt auch für die Installationskomponenten wie Borddurchlass, Seeventil, Seewasserfilter etc.

Die Ansaugleitung muss so kurz wie möglich ausgelegt werden. Der Borddurchlass (Seewasserzulauf) sollte dementsprechend in der Nähe des Generatorstandortes liegen.

Nach der Inbetriebnahme muss die Kühlwassermenge gemessen werden (z.B. durch Auffangen am Auspuff). Die Durchflussmenge, sowie den notwendigen Querschnitt der Kühlwasserleitung entnehmen Sie dem Anhang dieses Handbuches.

5.5.4 Einbau des Generators über der Wasserlinie

Beim Einbau des Generators muss unbedingt darauf geachtet werden, dass die Impellerpumpe gut zugänglich ist.

Sollte dies nicht möglich sein, kann statt der fest in der Kapsel eingebauten Pumpe eine externe Pumpe mit Elektroantrieb verwendet werden, die dann an einer gut zugänglichen Stelle montiert werden sollte. Wenn der Generator über der Wasserlinie installiert wird, ist mit einem stärkeren Impellerverschleiß zu rechnen, da die Pumpe nach dem Start einige Sekunden trocken läuft. Damit die Pumpe nur kurz Luft ansaugt, sollte der Seewasserschlauch so nah wie möglich am Seewassereingang des Generators eine Schleife beschreiben (siehe Bild). Durch das Seewasser wird der Impeller geschmiert, und dieLebensdauer erhöht sich.

Durch die Installation eines Rückschlagventils in der Seewasser-Zulaufleitung, die sich unter der Wasserlinie befindet, kann dieses Problem ein wenig eingeschränkt werden.

Ist die Seewasseransaugleitung zu lang oder der Generator zu hoch über der Wasserlinie installiert, kann eine elektrische Pumpe in die Ansaugleitung eingebaut werden. In diesem Falle sollte der Impeller aus der Impellerpumpe ausgebaut werden.

Hinweis:

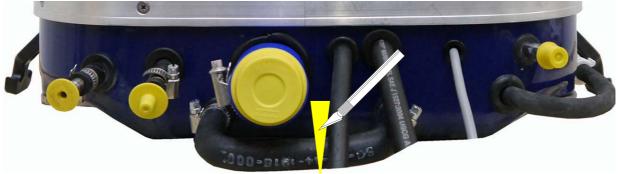
Kontaktieren sie Fischer Panda für weitere Informationen.

Man darf auf keinen Fall jahrelang den Impeller wechseln, ohne die alte Pumpe ebenfalls auszutauschen.

Wenn der Dichtring innerhalb der Pumpe defekt ist, läuft Seewasser in die Kapsel des Generators. Eine Reparatur ist dann sehr kostspielig.

Hinweis:

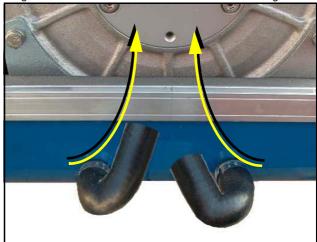
Es sollten sich immer Ersatzimpeller und auch eine Ersatzpumpe an Bord befinden. Die alte Pumpe kann an Fischer Panda zurückgeschickt werden, um sie kostengünstig generalüberholen zu lassen


5.5.5 Einbau des Generator unter der Wasserlinie

Wenn der Generator nicht mindestens 600 mm über der Wasserlinie angebracht werden kann, muss unbedingt ein Belüftungsventil in die Seewasserleitung montiert werden.

Bei Aufstellung neben der "Mittschiffslinie" muss auch eine mögliche Krängung berücksichtigt werden! Der Wasserschlauch für das externe Belüftungsventil an der Rückseite der Kapsel wird durchtrennt und an beiden Enden jeweils mit einem Verbindungsnippel durch ein Schlauchende verlängert. Beide Schlauchenden müssen außerhalb der Kapsel zu einem Punkt, möglichst 600 mm über der Wasserlinie in der Mittschiffslinie, herausgeführt werden. Das Ventil wird an der höchstens Stelle mit den beiden Schlauchenden verbunden. Wenn das Ventil verklemmt ist, kann die Kühlwasserleitung nach dem Stopp des Generators nicht belüftet werden, die Wassersäule wird nicht unterbrochen und das Wasser kann in den Brennraum des Motors eindringen. Dieses führt kurzfristig zur Zerstörung des Motors!

Fig. 5.5.5-2: Gummischlauch für Belüftungsventil - Beispiel



Der Gummischlauch für das externe Belüftungsventil wird durchgeschnitten...

...und nach oben gebogen.

Nun werden die beiden Enden jeweils mit einem Schlauch verlängert und in einer Höhe von ca. 600 mm über der Wasserlinie ein Belüftungsventil angebracht.

Fig. 5.5.5-3: durchtrennter Gummischlauch für Belüftungsventil

5.5.5.1 Seewasser Installationsschema

Fig. 5.5.5.1-1: Beispiel Seewasser Installationsschema (G) Wassereinlaß Water inlet Passe coque Bordventil Kugelhahn Belüftungsventil Schlauchanschluss Air valve Antisyphon Ausgleichsbehälter Expansion tank Vase d'expansion Ruckschlagventli Ħ min 50 mm max 200 mm Generator 600 mm 200 Generator Kühlwasserfilter E, Abgaskrümmer Exhaust elbow Coude d'echapp Wasserlinie Water line Ligne de flottaison

5.5.6 Erstes Befüllen und Entlüften des internen Kühlwasserkreises

Der Ausgleichsbehälter ist mit einem Überdruckventil 500 mbar im Deckel ausgerüstet. Beim Generatorbetrieb kann bei Überdruck heiße Kühlflüssigkeit hier austreten. Tragen Sie beim Arbeiten Sicherheitskleidung und sorgen Sie für einen geeigneten Einbauort.

1. Auffüllen des externen Kühlwasser-Ausgleichsbehälters mit Kühlwasser.

Achtung: "Maximaler Füllstand = Markierung "max."

Der Deckel auf dem externen Kühlwassergefäß muss vorläufig geöffnet bleiben (alle anderen Verschlüsse sind aber jetzt geschlossen!).

Beispielbild

2. Starten Sie die Frischwasserpumpe.

Die elektrische Frischwasserpumpe kann mit der Option "Prime Fuel" im Menü des iControl Fernbedienpanels gestartet werden.

Achtung! Verbrennungsgefahr.

Fig. 5.5.6-1: Kühlwasserausgleichsbehälter

3. Entlüftungsschraube am Thermostatgehäuse öffnen, bis Kühlflüssigkeit blasenfrei austritt. Entlüftungsschraube schließen.

Während des Entlüftens den Kühlflüssigkeitsstand im Ausgleichsgefäß kontrollieren und ggf. nachfüllen.

Beispielbild

4. Start des Generators

Nach dem Befüllen des Generators muss dieser gestartet werden. Während dieser ersten Phase der Inbetriebnahme darf der Generator nicht belastet werden.

Nach ca. 10 Sek. Betriebszeit den Generator wieder abschalten!

5. Wiederholen Sie die Schritte 1-4 solange, bis keine Luft mehr aus der Entlüftungsschraube am Thermostatgehäuse entweicht.

Schließen Sie danach die Entlüftungsschraube.

Füllen Sie das Ausgleichsgefäß bis zur max. Markierung auf.

Schließen Sie das Ausgleichsgefäß.

6. Erneuter Entlüftungsvorgang 10 Betriebsstunden nach der ersten Inbetriebnahme (und wenn erforderlich).

Auch nach der ersten Inbetriebnahme kann sich immer noch in geringen Mengen Luft im Kühlkreislauf befinden. Um einen einwandfreien und effektiven Betrieb des Kühlsystems zu gewährleisten, muss deshalb in den nächsten Tagen (und gegebenenfalls Wochen) gelegentlich der Entlüftungsvorgang wiederholt werden. Es werden immer noch - insbesondere wenn der Generator längere Zeit gestanden hat - geringe Mengen von Luft aus den Entlüftungsöffnungen austreten.

Während des Entlüftungsvorganges muss immer wieder ACHTUNG: Zirkulation prüfen überprüft werden, ob das Kühlwasser auch tatsächlich zirkuliert. Wenn sich Luftblasen in der internen Kühlwasserpumpe festgesetzt haben, kann es sein, dass der Kühlwasserkreis nicht zirkuliert. Der Generator würde dann sehr schnell überhitzen und abschalten.

5.5.6.1 Frostschutz im Kühlkreislauf

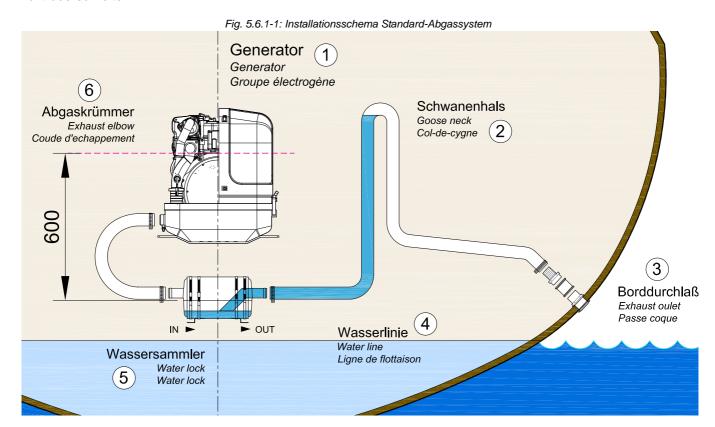
Im Interesse der Sicherheit muss die Konzentration der Frostschutzlösung regelmäßig kontrolliert werden. Werkseitig ist die Frostschutzlösung auf - 15 ° C vorgesehen. Wenn beim Transport und bei der Lagerung niedrigere Temperaturen in Betracht kommen, muss die Kühlwasserfüllung unbedingt abgelassen werden. Die Kühlflüssigkeit dient auch dem Korrosionsschutz des Motors.

5.5.7 Temperaturprüfung zur Kontrolle des Kühlkreises

Man kann mit einem IR-Thermometer prüfen, ob zwischen Kühlwasservorlauf und Kühlwasserrücklauf ein Temperaturunterschied besteht.

Die Kühlwasservorlaufleitung kann direkt vor der internen Kühlwasserpumpe gemessen werden.

Die Kühlwasserrücklaufleitung kann man entweder am Austritt des wassergekühlten Abgaskrümmers oder an der


Seite, wo diese Leitung am Wärmetauscher eintritt, gemessen werden.

Die Temperaturdifferenz zwischen Vorlauf und Rücklauf soll bei Nennbetrieb ca. 2-3°C betragen.

5.6 Installation des Standard-Abgassystems - Schema

5.6.1 Auslegung des Abgassystems

Die Auspuffanlage des Generators muss getrennt von der Auspuffanlage der Hauptmaschine oder eines anderen Aggregats durch die Bordwand ins Freie geführt werden. In der Fischer Panda Zubehörliste wird ein Spezial-Wassersammler angeboten, der gleichzeitig auch eine besonders gute Geräuschdämpfung bewirkt. Der Wassersammler sollte so nah wie möglich am Generator und an der tiefsten Stelle des Auspuffsystems installiert werden. Er muss so groß bemessen sein, dass darin das Kühlwasser vom höchsten Punkt (normalerweise Schwanenhals) bis zum tiefsten Punkt aufgefangen wird und nicht in die Maschine steigen kann. Die Abgasleitung ist aus der Kapsel fallend zum Wassersammler zu führen. Danach führt die Leitung steigend über den Schwanenhals zum Schalldämpfer (siehe Zeichnung). Der Schwanenhals muss auf der Mittelachse des Schiffes liegen. Damit der Abgasgegendruck nicht zu groß wird, sollte die Gesamtlänge der Auspuffleitung 6 m möglichst nicht überschreiten.

5.7 Einbau des "Wassersammlers"

Achten Sie auf die richtige Durchflussrichtung durch den Wassersammler.

Hinweis!:

Eine ungünstige Einbaulage des Wassersammlers kann dazu führen, dass Seewasser in den Brennraum des Dieselmotors gelangt und zu irreversible Schäden führt.

Hierzu ist klarzustellen:

Wenn Seewasser in den inneren Bereich des Motors gelangt, ist das nicht durch Fehlkonstruktionen des Generators oder durch Fehler am Motor selbst möglich. Dies kann nur durch die Abgasleitung in den Verbrennungsraum und dadurch in den Motor gelangen. Dabei spielt die Position des Generators und des Wassersammlers sowie die Anordnung der Kühlwasser- und Abgasleitungen die entscheidende Rolle.

Wenn der Wassersammler ungünstig angeordnet ist, kann das zurücklaufende Kühlwasser in der Abgasleitung so hoch ansteigen, dass der Abgasstutzen erreicht wird. Da bei stehendem Motor immer mindestens ein Auslassventil offen steht, hat das Seewasser freien Zugang zum Verbrennungsraum. Dieses Seewasser läuft dann durch Kapillarwirkung an den Kolben vorbei und gelangt so sogar bis in das Motoröl.

Wenn festgestellt wird, dass der Motorölstand ungewöhnlich hoch ist und/oder das Öl eine gräuliche Farbe zeigt, darf der Motor nicht mehr benutzt werden. Das ist ein sicheres Zeichen dafür, dass Kühlwasser in die Ölwanne gelangt ist. Wenn der Motor unter diesen Bedingungen in Betrieb genommen wird, vermischt sich das Wasser mit dem Öl, und es kommt zur Emulsion. Das Öl wird dann sehr schnell so dickflüssig wie eine Paste. In dieser Phase werden die feinen Ölkanäle verstopft und wenige Augenblicke später geht die Maschine wegen der mangelnden Schmierung zu Bruch. Bevor es dazu kommt, sollte man sofort einen Ölwechsel vornehmen. Da das Wasser aber nur durch den Brennraum in den Motor gelangen kann, muss man davon ausgehen, dass im Bereich der Kolbenringe Korrosion einsetzt. Diese Folgen müssen mit einem Motorfachmann beraten werden. Es wird sinnvoll sein, als erste Maßnahme unverzüglich reichlich Kriechöl durch den Ansaugstutzen einzusprühen und dabei den Motor langsam mit dem Anlasser zu drehen.

Das Kühlwasser kann sowohl durch die Abgasleitung selbst aber auch durch die Kühlwasserzuführung in den Abgasbereich gelangen.

5.7.1 Mögliche Ursachen für Wasser in der Abgasleitung

5.7.1.1 Mögliche Ursache: Abgasleitung

Falls die Ursache in der Abgasleitung selbst liegt, sind folgende Punkte an der Abgasleitung zu überprüfen:

- a. Position des Wassersammlers zu hoch. Das Wasser erreicht den Abgaskanal.
- b. Position des Wassersammlers ist zu weit von der Generator-Mitte entfernt. Das Wasser erreicht bei Schräglage den Abgaskanal.
- c. Wassersammler zu klein bezogen auf die Länge der Abgasleitung.

5.7.1.2 Mögliche Ursache: Kühlwasserleitung

Die Kühlwasser-Zuführung muss, wenn der Generator nicht eindeutig 600 mm über der Wasserlinie installiert ist, mit einem "Belüftungsventil" ausgestattet werden, welches mindestens 600 mm über die Wasserlinie hinausgeführt wird. Diese Position muss auch bei jeder Schräglage gewährleistet sein. Deswegen sollte das Belüftungsventil in der Mitte des Schiffes angeordnet sein, so dass es bei Schräglage nicht auslenken kann.

- a) Position des Belüftungsventils zu niedrig. Das Wasser läuft bei Schräglage in den Abgasbereich.
- b) Position des Belüftungsventils ist zu weit aus Schiffsmittellinie entfernt. Das Wasser erreicht bei Schräglage den Abgasbereich.
- c) Belüftungsventil arbeitet nicht, weil es klemmt oder durch Schmutz verklebt ist (die Funktion des Belüftungsventils muss regelmäßig geprüft werden).

Da es bei der Verlegung der Abgasleitung immer wieder dazu kommt, dass Risiken für die Funktion nicht erkannt werden, beziehen sich die nachfolgenden Ausführungen ausdrücklich auf die Abgasleitung. Hier spielt die Lage, Größe und Position des "Abgaswassersammlers" eine sehr wichtige Rolle:

5.7.2 Einbauort für den Abgaswassersammler

Bei einer wassergekühlten Auspuffanlage muss strikt darauf geachtet werden, dass unter keinen Umständen

Kühlwasser aus der Abgasleitung in den Bereich des Abgaskrümmers am Motor gelangen kann. Falls dieses geschieht, kann das Kühlwasser durch ein offenstehendes Auslassventil in den Verbrennungsraum gelangen. Dies würde zu irreparablen Schäden am Motor führen.

Da man bei Segelyachten zusätzlich mit der Schräglage rechnen muss, hat die Position des Wassersammlers eine sehr große Bedeutung. Generell kann man sagen:

Je tiefer der Wassersammler unterhalb des Generators angeordnet ist, um so besser ist der Schutz vor dem Eindringen von Wasser in den Verbrennungsraum.

In der unten stehenden Zeichnung wird der Abstand zwischen dem kritischen Punkt am Abgaskrümmer und dem höchstzulässigen Niveau des Wassers in der Abgasleitung mit 600 mm angegeben. Dieser Abstand sollte als Mindestabstand verstanden werden.

5.7.3 Das Volumen des Abgaswassersammlers

Der Abgaswassersammler muss so groß bemessen sein, dass er die gesamte Menge des von der Abgasleitung zurückfließenden Wassers aufnehmen kann. Die Wassermenge hängt von der Länge (L) und dem Querschnitt der Abgasleitung ab. Während der Dieselmotor läuft, wird kontinuierlich Kühlwasser in das Abgassystem eingespritzt und durch den Abgasdruck mit den Abgasen nach draußen befördert. Wenn der Motor abgestellt wird, sinkt die Drehzahl des Dieselmotors relativ schnell. Dabei wird der Punkt erreicht, wo der Druck des Abgases nicht mehr ausreicht, um das Kühlwasser nach draußen zu befördern. Alles Kühlwasser, das sich dann noch in der Leitung befindet, läuft in den Wassersammler zurück. Gleichzeitig wird vom Dieselmotor selbst auch weiterhin Kühlwasser durch die Kühlwasserpumpe befördert, solange dieser sich noch dreht.

Der Wassersammler muss unbedingt so groß bemessen sein, dass er die gesamte Menge dieses Kühlwassers aufnimmt und dass dabei die vorgeschriebene Höhendifferenz von 600 mm bis zum kritischen Punkt am Abgaskrümmer nicht überschritten wird.

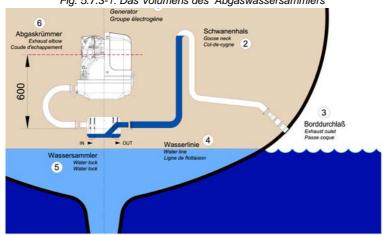
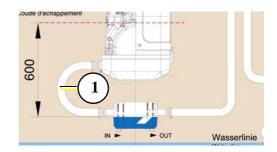



Fig. 5.7.3-1: Das Volumens des Abgaswassersammlers

Wenn Zweifel bestehen, kann eine Überprüfung relativ einfach dadurch vorgenommen werden, dass vorübergehend ein klarsichtiger Schlauch (1) als Abgasschlauch verwendet wird. Dabei lässt sich das Kühlwasserniveau sehr leicht kontrollieren.

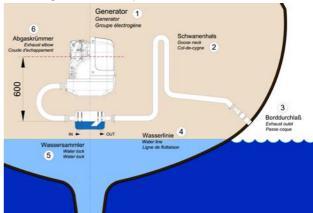
Fig. 5.7.3-2: Überprüfung des Kühlwasserniveaus

5.7.3.1 Ideale Position des Wassersammlers

Die ideale Position für den Wassersammler ist mittig unter dem Generator.

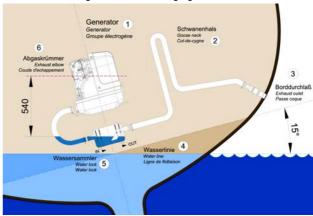
Nur in dieser Position ist sichergestellt, dass sich das Wasserniveau bei Schräglage nicht durch Ausweichen des Wassersammlers aus der Mittellinie heraus stark verändern kann.

Siehe die nachfolgenden Zeichnungen:


Idealposition des Wassersammlers

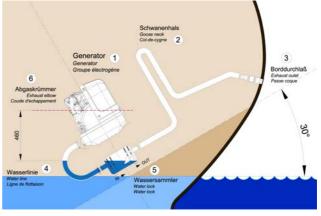
Auf Darstellung Fig. 5.7.3.1-1 ist der Wassersammler mittig unter dem Generator montiert. Bei Schräglage verändert sich die Position des Wassersammlers bezogen zu dem kritischen Punkt an der Abgasleitung nur sehr geringfügig.

Wichtiger Hinweis!


Fig. 5.7.3.1-1: Idealposition des Wassersammlers

Schräglage 15 Grad - Fig. 5.7.3.1-2

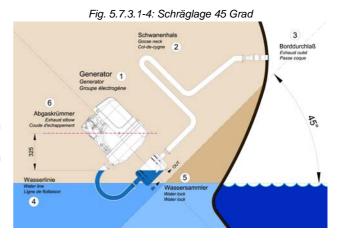
Der Abstand vom Abgaskrümmer zur Wassersäule hat sich auf 540 mm verringert.


Fig. 5.7.3.1-2: Schräglage 15 Grad

Schräglage 30 Grad - Fig. 5.7.3.1-3

Der Abstand des Wasserspiegels verändert sich auch bei der idealen Einbauposition so, dass nur noch 458 mm Abstand besteht. Damit ist der kritische Abstand bereits unterschritten.

Fig. 5.7.3.1-3: Schräglage 30 Grad



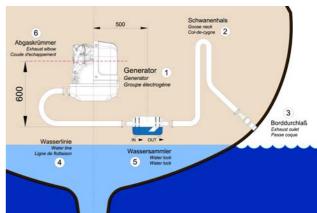
Schräglage 45 Grad - Fig. 5.7.3.1-4

In diesem Falle ist der Wasserspiegel so hoch gestiegen, dass der Abstand nur noch 325 mm beträgt.

Bei der extremen Schräglage von 45 Grad besteht also selbst in der idealen Einbauposition noch immer die Gefahr, dass durch starkes Schwanken ("Schwappen") Wasser bis in den unmittelbaren Bereich des Abgasstutzens gelangen kann. Hieraus wird erkennbar, dass der Abstand von 600 mm ein Mindestmaß darstellt, bei dem selbst bei idealer Einbauweise bei starker Schräglage auch noch die Gefahr auftreten kann, dass Wasser bei starken Bewegungen bis in den Abgaskrümmer schwappen kann.

Zusammenfassung:

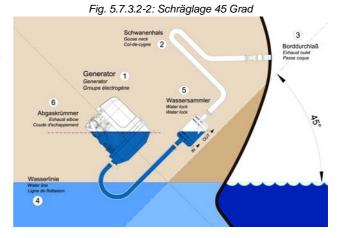
Die vorgegebene Mindesthöhe von 600 mm muss unbedingt eingehalten werden und gilt nur, wenn der Wassersammler in der idealen Einbauposition mittig unter dem Generator montiert wurde. Eine höhere Position ist dringend zu empfehlen, wenn mit der Schräglage von 45 Grad gerechnet werden muss.


5.7.3.2 Beispiel für den Einbau des Wassersammlers außerhalb der Mitte mit Darstellung der möglichen Folgen:

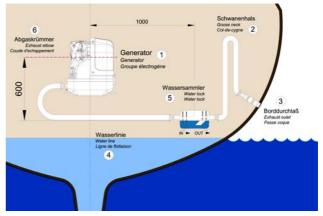
Die nachfolgenden Beispiele sind in erster Linie für den Einbau des Generators mit dem Wassersammler bei Segelyachten relevant. Bei Motoryachten muss mit einer Veränderung der Einbaulage durch Schräglage nicht gerechnet werden. Hier ist lediglich darauf zu achten, dass das Volumen des Wassersammlers so groß bemessen ist, dass das zurückfließende Wasser vollständig aufgenommen werden kann und dass in diesem Zustand noch der Mindestabstand von 600 mm eingehalten wird.

A) Einbau des Wassersammlers 500 mm neben der Mittellinie des Generators:

Einbau des Wassersammlers 500 mm neben der Mittellinie des Generators


Fig. 5.7.3.2-1: Wassersammler 500 mm neben der Mittellinie des Generators

Schräglage 45 Grad - Fig. 5.7.3.2-2


Der Wasserspiegel ist nun auf der gleichen Höhe wie der kritische Punkt am Abgaskrümmer. Wenn bei diesem Einbau das Schiff mit einer Schräglage von 45 Grad gesegelt wird, ist das Eindringen von Kühlwasser in den Brennraum unvermeidbar. So sind irreparable Schäden vorprogrammiert.

B) Einbauabstand zwischen Abgaswassersammler und Mittellinie des Generators 1000 mm

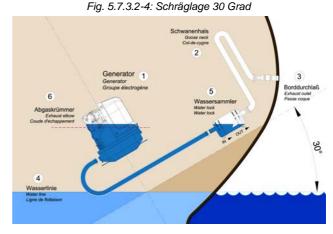

Einbauabstand zwischen Abgaswassersammler und Mittellinie des Generators 1000 mm

Fig. 5.7.3.2-3: Abgaswassersammler 1000 mm neben der Mittellinie des Generators

Schräglage 30 Grad - Fig. 5.7.3.2-4

Der Wasserspiegel ist nun auf der gleichen Höhe wie der kritische Punkt am Abgaskrümmer. Wenn bei diesem Einbau das Schiff mit einer Schräglage von 30 Grad gesegelt wird, ist das Eindringen von Kühlwasser in den Brennraum unvermeidbar. So sind irreparable Schäden vorprogrammiert.

Zusammenfassung:

Bei Segelyachten muss sehr darauf geachtet werden, dass der Wassersammler mittig unter dem Generator montiert wird, zumindest in Bezug auf die Schiffslängsachse. Dadurch wird verhindert, dass bei starker Schräglage der Wassersammler stark "ausleckt".

Das "Auslecken" des Wassersammlers führt dazu, dass der Wasserspiegel steigt und zu nahe an den kritischen Punkt am Abgaskrümmer herankommt.

5.8 Abgas-Wasser Trenneinheit

Um das Abgasgeräusch möglichst optimal zu reduzieren, wird die Verwendung eines zusätzlichen Schalldämpfers dicht vor dem Borddurchlass empfohlen. Dazu gibt es bei Fischer Panda ein Bauteil, das sowohl die Funktion eines "Abgas-Schwanenhalses" ausübt als auch die der Wassertrennung. Mit dieser "Abgas-Wasser-Trenneinheit" wird das Kühlwasser über eine separate Leitung abgeleitet. Hierdurch werden die Abgasgeräusche an der Außenseite der Yacht sehr stark vermindert. Insbesondere das "Wasserplätschern" entfällt.

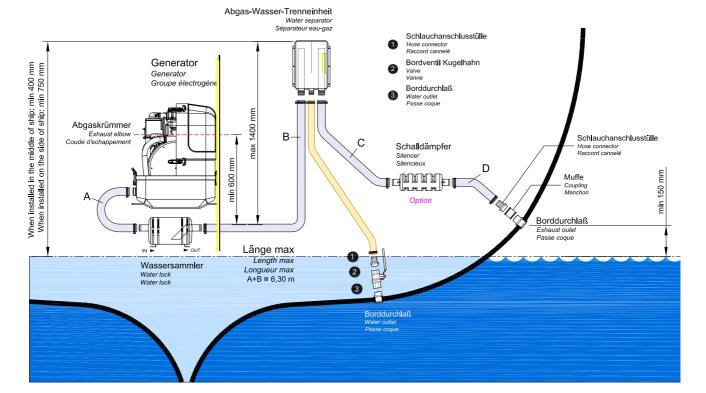
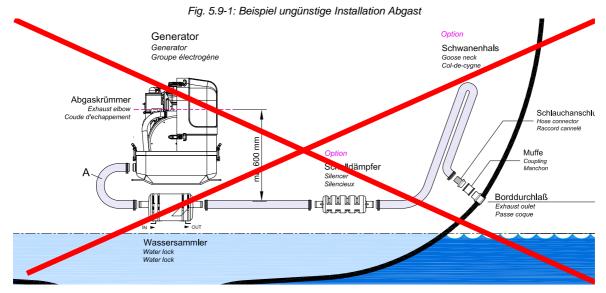



Fig. 5.8-1: Installation Abgas-Wasser Trenneinheit

5.9 Installation Abgas-Wasser-Trenneinheit- Schema

Wurde die Abgas-Wasser-Trenneinheit ausreichend hoch montiert, ist ein Schwanenhals nicht mehr erforderlich. Die Abgas-Wasser-Trenneinheit erfüllt die gleiche Funktion. Bei richtiger Installation des "Supersilent"-Abgassystems wird das Abgasgeräusch fast unhörbar sein und auch Ihren Bootsnachbarn nicht stören. Das beste Ergebnis wird erreicht, wenn die Schlauchleitung, durch die das Kühlwasser abgeleitet wird, auf möglichst kurzem Wege "fallend" direkt zum Auslass verlegt wird und dieser Auslass unter Wasser liegt.

Wenn aus bautechnischen Gründen der Borddurchlass für den Abgas-Anschluss relativ weit entfernt vom Generator montiert werden muss, sollte auf jeden Fall die Abgas-Wasser-Trenneinheit installiert werden. Der Wasserauslass muss dann aber auf kürzestem Wege nach außen geführt werden. Bei einer längeren Wegstrecke kann der Durchmesser des Abgasschlauches erweitert werden (z.B. von NW40 mm auf NW50 mm), um den Gegendruck gering zu halten. Wenn der Schlauchdurchmesser erweitert wird, kann die Abgasleitung auch über 10 m lang sein. Ein "Endschalldämpfer" kurz vor dem Borddurchlass kann die nach außen dringenden Geräusche noch einmal reduzieren.

Beispiel für eine ungünstige Installation:

- Wassersammler nicht tief genug unter dem Höhenniveau des Generators
- Abstand Wassersammler zum Schwanenhals zu groß Schema

5.10 Installation des Kraftstoffsystems

5.10.1 Die folgenden Komponenten müssen installiert werden:

- · Kraftstoffvorfilter mit Wasserabscheider
- externe Kraftstoffpumpe
- Rückschlagventil
- Drucklose Rücklaufleitung zum Tank

Die externe elektrische Kraftstoffpumpe soll in der Nähe des Tanks montiert werden.

Elektrische Kraftstoffpumpe

Mit dem Fischer Panda Generator wird normalerweise eine elektrische Kraftstoffpumpe (DC) geliefert. Die Kraftstoffpumpe muss nahe am tank montiert werden. Der elektrische Anschluss ist am Generator vorbereitet.

Fig. 5.10.1-1: elektrische Kraftstoffpumpe

Seite/Page 58 - Kaptitel/Chapter 5: Installation

Achtung: Kraftstoffpumpe so tief wie möglich installieren maximale Saughohe der Pumpe beträgt: 500mm maximale Förderhöhe der Pumpe beträgt: 2500mm Note: Fuel pump installed as deep as possible maximum suction lift of the pump is: 500mm maximum pump head is: 2500mm fuel filter with water separator No return valve 4 Filter (5 fuel pump Fuel connector 1 Kraftstoffanschluß FP1-051409

Fig. 5.10.1-2: Kraftstoffanschluss - Schema

- 1. Kraftstofftank
- 2. Externe Kraftstoffpumpe
- 3. Externer Kraftstofffilter mit Wasserabscheider

- 4. Rückschlagventil
- 5. externer Feinfilter
- 6. Generator

Externer Feinfilter

Bei Generatoren mit Kubota EA 300 bzw Farymann Motoren, ist der Feinfilter dem Generator beigelegt. Dieser Feinfilter ist direkt vor dem Generator in den Kraftstoffvorlauf zu setzen.

Beispielbild

Fig. 5.10.1-3: externer Feinfilter

5.10.2 Anschluss der Leitungen am Tank

Generell müssen Kraftstoff-Vorlauf und Kraftstoff-Rücklauf mit einem eigenen Kraftstoffansaugstutzen am Dieseltank angeschlossen werden.

Hinweis:

Anschluss der Rücklaufleitung am Tagestank bis auf den Boden führen

Wenn der Generator höher als der Tank montiert wird, sollte unbedingt die Rücklaufleitung zum Tank bis auf die gleiche Eintauchtiefe in den Tank hinein geführt werden wie auch die Ansaugleitung, um zu vermeiden, dass nach dem Abschalten des Generators der Kraftstoff in den Tank zurücklaufen kann, was zu erheblichen Startschwierigkeiten

nach längerem Abschalten des Generators führt.

Rückschlagventil in die Ansaugleitung

Falls die Rücklaufleitung nicht ebenfalls als Tauchrohr in den Tank hineingesetzt werden kann, sollte unbedingt durch ein Rückschlagventil in der Ansaugleitung gewährleistet werden, dass der Kraftstoff nach dem Abschalten des Generators nicht zurückfließen kann.

Der Panda Generator ist selbstentlüftend. Nach der ersten Inbetriebnahme oder nach längerer Stillstandzeit, sollten aber die Hinweise "Entlüftung des Kraftstoffsystems" beachtet werden.

Rückschlagventil für die Kraftstoffrücklaufleitung

ACHTUNG!

Sollte der Kraftstofftank über dem Niveau des Generators montiert sein (z.B. Tagestank), so muss ein Rückschlagventil in die Kraftstoffrücklaufleitung installiert werden um sicherzustellen, dass durch die Rücklaufleitung kein Kraftstoff in die Einspritzpumpe geführt wird.

5.10.3 Position des Vorfilters mit Wasserabscheiders

An allen Generatoren sind Kraftstoff-Filter installiert (ausgenommen Panda 4500). Zusätzliche Filter (mit Wasserabscheider) müssen außerhalb der Kapsel an gut zugänglicher Stelle in die Druckleitung zwischen der elektrischen Kraftstoffpumpe und dem Tank installiert werden.

Zusätzlich zu dem serienmäßigen Feinfilter muss außerhalb der Schalldämmkapsel in der Kraftstoffversorgungsleitung ein Vorfilter mit Wasserabscheider installiert werden (nicht im Lieferumfang enthalten).

Beispielbild

5.10.4 Entlüftung des Kraftstoffsystems

Grundsätzlich ist das Kraftstoffsystem selbstentlüftend, d.h. es muss nur der elektrische Starter bedient werden, dann wird sich durch die Förderung der Kraftstoffpumpe nach einiger Zeit das Kraftstoffsystem automatisch entlüften. Es ist aber dennoch notwendig, bei der ersten Inbetriebnahme, wenn die Leitungen leer sind, das folgende Verfahren durchzuführen:

Starten der Kraftstoffpumpe

Die externe Kraftstoffpumpe kann über das Menü des iControl2 Fernbedienpanels eingeschaltet werden. Siehe "Entlüften des Kraftstoffsystems ("Prime Fuel")" auf Seite 121.

Himweis:

Entlüftungsschraube

4.) Die Entlüftungsschraube am Kraftstoffmagnetventil öffnen, während die Pumpe läuft, bis der Kraftstoff blasenfrei

austritt. Austretenden Kraftstoff mit einem geeigneten Tuch auffangen und entsorgen.

Bei Generatoren ohne Kraftstoffmagnetventil ist die Entlüftungsschraube direkt am Anschluss der Kraftstoffleitung/des Motors angebracht.

5.) Kraftstoffpumpe im iControl2 Fernbedienpanel deaktivieren.

Einspritzdüsen

Über das Fernbedienpanel kann der Generator nun gestartet werden. Der Generator sollte nach 2-3 Versuchen anspringen.

Wenn der Generator nicht anspringt, sollte die Überwurfmuttter an den Einspritzdüsen gelöst und wie oben beschrieben entlüftet werden.

Kraftstoff sollte hierbei blasenfrei aus der Einpritzleitung austreten.

5.11 Generator DC System-Installation

Der Panda 5000i.Neo hat keine DC Lichtmaschine, um die Starterbatterie zu laden. Die Starterbatterie muss über ein externes Ladegerät geladen werden.

Note:

Für den Generator sollte eine eigene separate Starterbatterie montiert werden. Hierdurch wird der Generator unabhängig vom übrigen Batterienetz. So kann, wenn z.B. aufgrund einer Entladung des Bordnetzes die Batterien leer sind, noch durch die eigene Starterbatterie jederzeit wieder gestartet werden. Gleichzeitig hat die separate Starterbatterie den entscheidenden Vorteil, dass der Generator mit seinem elektrischen System von dem gesamten übrigen Gleichstrom-Bordnetz galvanisch getrennt ist. Das heißt, der Minuspol (-) liegt nicht an Masse. Der Generator ist somit massefrei gegenüber dem übrigen Netz.

Fischer Panda empfiehlt das "victron energy Blue Smart IP67 DC Ladegerät" 12V 13A äquivalent für den Panda 5000i Neo PMS Generator. Fischer Panda Art. Nr. 0027563

Fischer Panda empfiehlt

5.11.1 Anschluss der Starterbatterie

Das Pluskabel (+) der Batterie wird direkt an dem Magnetschalter des Anlassers angeschlossen.

Das Minuskabel (-) der Batterie wird unterhalb des Anlassers am Motorblock angeschlossen.

Panda Generatoren ab Panda 6000 haben in der Regel eine eigene Lichtmaschine/Dynamo, um die Starterbatterie zu laden. Bei Generatoren ohne eigene Lichtmaschine/Dynamo ist die Starterbatterie durch ein externes Ladegerät nachzuladen.

Hinweis:

Es muss sichergestellt sein, dass zuerst die Kabel am Generator angeschlossen werden und erst dann an die Batterie.

ACHTUNG!

Verwenden Sie nur vom Batteriehersteller als Starterbatterie zugelassene Batterien.

Verwenden Sie die vom Motorhersteller empfohlene Batteriekapazität.

Prüfen Sie vor der Installation, dass die Spannung der Starterbatterie mit der Spannung des Startsystems übereinstimmt.

z.B. 12 V Starterbatterie für 12 V Startsystem

z.B. 24 V Starterbatterie für 24 V Startsystem (z. B. 2x 12V in Reihe)

Eine zu hohe Starterbatteriespannung kann Teile des Generators zerstören.

Um große Spannungsverluste zu vermeiden, sollte die Batterie möglichst nah an den Generator installiert werden. Der Pluspol der Batterie wird an dem roten Kabel angeschlossen, der Minuspol an dem blauen Kabel.

Beachten Sie die entsprechenden Regelungen "ABYC regulation E11 AC and DC electrical systems on boats" und/oder EN ISO 10133:2000 kleine Wasserfahrzeuge, elektrisches System, Niederspannungssystem (DC)!

ACHTUNG!

Hinweis:

Achtung:

- Der Batterieraum sowie die entsprechende Installation sind fachgerecht auszulegen.
- Die Batterietrennung kann mechanisch oder mit einem entsprechenden Leistungsrelais erfolgen.
- Installieren Sie eine Sicherung entsprechender Größe in der Starterbatterie Plusleitung so nahe wie möglich an die Batterie, aber maximal mit 300 mm (12 inch) Abstand zur Batterie.
- Das Kabel von der Batterie muss zur Sicherung mit einem Schutzrohr/Schutzhülle gegen Durchscheuern gesichert werden.
- Benutzen Sie zum Anschluss selbstverlöschende und feuergeschützte Kabel, die für Temperaturen bis zu 90 °C, 195 °F ausgelegt sind.
- Verlegen Sie die Batteriekabel so, dass sie nicht durch Scheuern oder andere mechanische Beanspruchung abisoliert werden können.
- Die Batteriepole müssen gegen unbeabsichtigten Kurzschluss gesichert werden.
- Innerhalb der Kapsel des Fischer Panda Generators muss das positive Batteriekabel so verlegt werden, das es vor Hitze und Vibrationen durch eine entsprechende Schutzhülle/Schutzrohr geschützt ist. Es muss so verlegt werden, dass es rotierende oder im Betrieb heiß werdende Teile wie z. B. Riemenscheibe, Abgaskrümmer, Abgasrohr und den Motor selbst nicht berührt. Verlegen Sie das Kabel nicht zu straff, da es sonst beschädigt werden könnte.

Führen Sie nach der Installation einen Testlauf des Generators durch und überprüfen Sie die Verlegung des Batteriekabels während und nach dem Testlauf. Falls nötig, führen Sie Korrekturen durch.

5.11.2 Anlasser

Panda Generatoren sind mit einem eigenständigen Anlasser ausgestattet. Die Verbindungsleitungen von der Batterie zum DC-System muss entsprechend der Stromaufnahme des Anlassers ausgelegt werden.

- 1. Magnetschalter für Anlasser
- 2. Anlasser

Das Pluskabel (+) der Batterie wird direkt an dem Magnetschalter des Anlassers angeschlossen.

Beispielbild

Das Minuskabel (-) der Batterie ist am Motor angeschlossen.

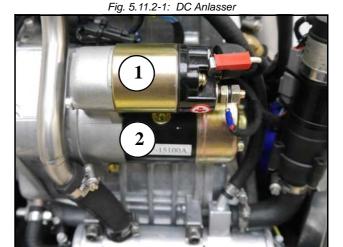


Fig. 5.11.2-2: Pluskabel der Starterbatterie

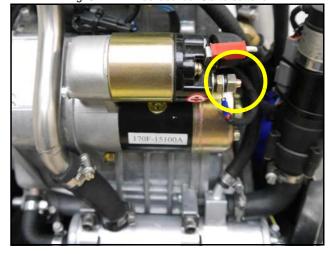


Fig. 5.11.2-3: Minuskabel der Starterbatterie

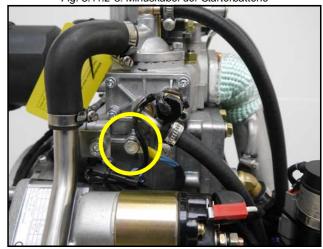
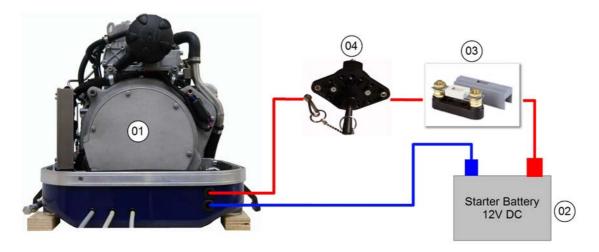



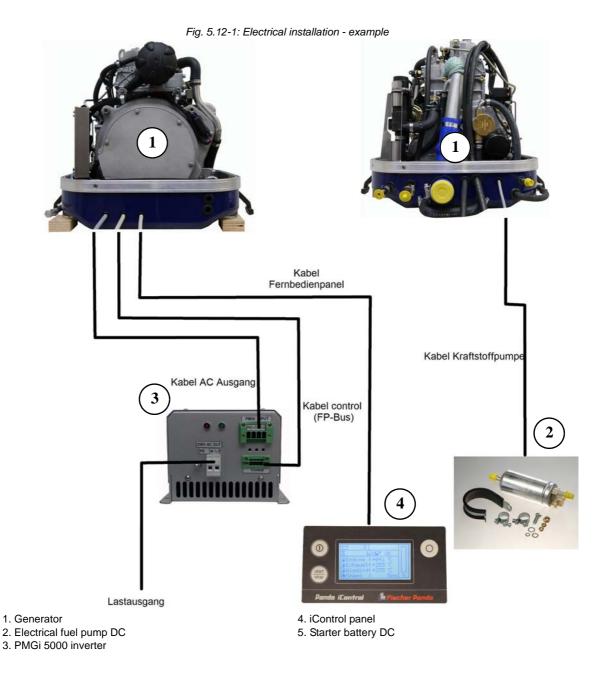
Fig. 5.11.2-4: Anschluss Starterbatterie 12 V - Schema

- 1. Generator
- 2. Starterbatterie

- 3. Sicherung
- 4. Batterieschalter

5.11.3 Anschluss des Fernbedienpanels - siehe Fernbedienpanel Datenblatt

5.12 Generator AC System-Installation


Bevor das elektrische System installiert wird, beachten Sie die Sicherheitshinweise in diesem Kapitel.

Es ist sicher zu stellen, das die Installation den örtlichen Vorschriften und Regularien entspricht. Dieses beeinhaltet auch Sicherungen und Personenschutzsysteme (z.B. RCD etc.).

Die Sicherheitssysteme sind BORDSEITIG auszuführen.

Warnung!: Elektrische Spannung

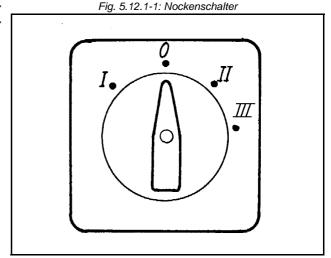
5.12.1 Installation PMGi inverter - Siehe PMGi 5000 Inverter Kapitel

5.12.1.1 Trennschalter - Stromwahlschalter

Zwischen Generator (PMGi) und Bordnetz muss ein Trennschalter installiert werden. Dieser Trennschalter muss gewährleisten, dass sofort alle AC-Verbraucher abgeschaltet werden können. Der Schalter dient auch

dazu, bei vorhandenem Landanschluss den Generator vom Netz zu trennen.

Als Trennschalter wird normalerweise ein "Nockenschalter" verwendet. Der Schalter sollte möglichst drei Grundstellungen haben: Landstrom - Null - Generator. Eventuell sind vier Stellungen sinnvoll, wenn zusätzlich noch ein Stromwandler (DC-AC) betrieben wird.


0 Aus

I Generator

II Landanschluss

III Stromwandler

Beispiel

Der Nockenschalter muss zweipolig sein, damit sowohl "Mittelpunkt" als auch "Phase" abgeschaltet werden können.

Wenn 3-Phasen-Drehstrom installiert wird und dieser Anschluss ebenfalls auch für Landstrom vorgesehen ist, muss hierfür ein zusätzlicher Trennschalter eingesetzt werden.

Statt des manuell zu bedienenden Nockenschalters kann auch ein automatisch geschaltetes Schütz installiert werden. Das Schütz wird dann so geschaltet, dass es im Ruhezustand auf "Landstrom" gestellt ist. Wenn der Generator läuft und Spannung abgibt, schaltet das Schütz dann automatisch auf "Generatorstellung".

Es muss auch unbedingt darauf geachtet werden, dass das Drehstromnetz und das 230 V Netz vollkommen SEPARAT voneinander installiert werden.

5.13 Hinweise zur Vermeidung von galvanischer Korrosion

Galvanische Korrosion

Wenn mehrere Maschinen über ein gemeinsames elektrisches Potential (z. B. Masse) miteinander verbunden sind und das System auch dann noch mit anderen Metallteilen in Kontakt ist (z.B. dem Rumpf eines Nachbar-Schiffes), muss man immer davon ausgehen, dass von den verschiedenen Bauteilen unterschiedliche elektrische Spannungen ausgehen, die auf das gesamte System und auf die Bauteile wirken. Dabei bewirkt die Gleichspannung einen elektrischen Strom, wenn in der Umgebung dieser Teile elektrisch leitende Flüssigkeiten (Elektrolyt) zur Verfügung stehen. Dies nennt man auch "Galvanischer Prozess". Dabei wird die elektrische Ladung von den negativ geladenen Bereichen (Anode) zum positiv geladenen Bereich (Kathode) geführt. Der negativ geladene Teil (Anode) wird dabei "geopfert", das heißt, dass die elektrischen Teilchen an der Oberfläche des Materials bei diesem chemischen Prozess Zersetzungen bewirken. Da Aluminium ein elektrisch negativ geladenes Metall ist, wird Aluminium im Vergleich zu den meisten übrigen Metallen die Rolle der Anode spielen. Dies gilt insbesondere gegenüber Kupfer, Messing, aber auch Stahl, Edelstahl usw.. Diese Metalle sind positiv geladen.

5.13.1 Hinweise und Maßnahmen zur Vermeidung von Korrosion

Einige Maßnahmen müssen bei der Installation unbedingt beachtet werden, damit eine galvanische Korrosion so weit wie möglich vermieden wird:

- Trennen der Wassersäule (zwischen Seewasser und Generator) nach dem Abschalten. Dieses kann entweder durch ein Absperrventil von Hand geschehen. (Achtung! Nach jedem Betrieb muss das Ventil dann geschlossen werden). Oder durch die Installation eines automatischen Belüftungsventils; in diesem Fall öffnet und schließt das Ventil automatisch.
- Verbinden aller Bauteile (Borddurchlass, Generator, Wärmetauscher usw.) auf ein gemeinsames Potential. Hierzu werden alle Elemente der Installation durch ein Kabel verbunden (geerdet).

 Strikte Trennung des Generators vom 12 V Bordnetz, d.h. massefreie Installation des 12 V Systems (Generatorinstallation und allgemeines Bordnetz).

5.14 Überprüfen und Auffüllen des Schmierölkreislaufs

Überprüfen und füllen Sie den Schmierölkreislauf, wie im Kapitel Wartung beschrieben.

5.15 Isolationstest

Nach der Installation, vor der allgemeinen Inbetriebnahme und vor Übergabe des Generators an den Kunden, muss ein Isolationstest wie folgt durchgeführt werden:

ACHTUNG!

- 1. Alle elektrischen Verbraucher ausschalten.
- 2. Der Generator wird gestartet.
- 3. Mit einem Spannungsmessgerät (Einstellen auf Volt/AC) wird die Spannung zwischen:
 - a) Gehäuse des Generators und AC-Kontrollbox
 - b) Gehäuse des Generators und Masse der Umgebung gemessen.
 - Es darf keine elektrische Spannung über 50 mV (Millivolt) anliegen.
- 4. Danach ist die installierte Schutzmaßnahme zu überprüfen. Wenn ein RCD (FI-Schutzschalter) installiert wurde, ist dieser auf Funktion zu überprüfen, und es muss sichergestellt sein, dass alle Anschlüsse richtig angeklemmt sind. Dies erfolgt durch Messen der Phasen gegeneinander und gegen Null. Eine zusätzliche vierte Phase (L1') muss bei Generatoren mit DVS Wicklung überprüft werden.
- 5. Falls der Generator durch "Nullung" geschützt ist, muss sichergestellt sein, dass ALLE Komponenten durch ein gemeinsames Potential vom Gehäuse her miteinander verbunden sind.

Diese Maßnahme muss jedoch unbedingt den Erfordernissen der Landstrominstallation entsprechen. Im Regelfalle muss deswegen davon ausgegangen werden, dass nur eine Schutzmaßnahme mit RCD (FI-Schutzschalter) diesen Ansprüchen genügt. Dies sollte den nationalen Vorschriften der jeweiligen Region ensprechen, wo das System an Landstrom angeschlossen ist. Der RCD (FI-Schutzschalter) muss von seinem Auslösestrom her den Erfordernissen der Installationsumgebung entsprechen.

5.16 Inbetriebnahme

Nach erfolgter erfolgreicher Installation, ist eine Inbetriebnahme durchzuführen.

Hierfür wird das Inbetriebnahmeprotokoll vom installierenden Fachmann vollständig abgearbeitet und ausgefüllt. Das ausgefüllte Protokoll ist dem Betreiber zu übergeben.

Der Betreiber ist in die Bedienung, Wartung und Gefahren des Generators einzuweisen. Dieses betrifft sowohl die im Handbuch aufgeführten Wartungsschritte und Gefahren, sowie weiterführende, die sich aus der spezifischen Installation und den angeschlossenen Komponenten ergeben.

Das original Inbetriebnahmeprotokoll muss an Fischer Panda gesendet werden, um die vollständige Garantie zu erhalten. Fertigen Sie vorher eine Kopie für Ihre Unterlagen. Hinweis:

6. Wartungshinweise

6.1 Personal

Die hier beschriebenen Wartungsarbeiten können, soweit nicht anders gekennzeichnet, durch den Bediener ausgeführt werden.

Weitere Wartungsarbeiten dürfen nur von speziell ausgebildetem Fachpersonal oder durch Vertragswerkstätten (Fischer Panda Service Points) ausgeführt werden. Dies gilt insbesondere für Arbeiten an der Ventileinstellung, Diesel-Einspritzanlage und für die Motorinstandsetzung.

Die hier beschriebenen Arbeiten können als Leitfaden genommen werden. Da Fischer Panda die genauen Einbau und Lagerungskonditionen nicht bekannt sind, sind die Arbeitsanweisungen und Materialien von einem Fachmann vor Ort anzupassen. Schäden durch unsachgemäße Wartung/Instandsetzung, sind nicht durch die Garantie asbgedeckt.

Achtung:

6.2 Gefahrenhinweise für die Wartung

Beachten Sie die allgemeinen Sicherheitshinweise am Anfang dieses Handbuches.

Hinweis!:

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Es muss immer die Batteriebank abgeklemmt werden (zuerst Minuspol dann Pluspol), wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

Warnung!: Automatikstart

Unsachgemäße Wartung kann zu schweren Personenoder Sachschäden führen. Deshalb:

- Wartungsarbeiten nur bei abgestelltem Motor Vornehmen
- Vor Beginn der Arbeiten für ausreichende Montagefreiheit sorgen.
- auf Ordnung und Sauberkeit am Arbeitsplatz achten! Lose aufeinander- oder umherliegende Bauteile und Werkzeuge sind Unfallquellen.
- Wartungsarbeiten nur mit Handelsüblichen Werkzeug und Spezialwerkzeug durchführen. Falsches oder beschädigtes Werkzeug kann zu Verletzungen führen.

Achtung: Verletzungsgefahr

Öl und Kraftstoffdämpfe können sich bei Kontakt mit Zündquellen entzünden. Deshalb

- Kein offenes Feuer bei arbeiten am Motor.
- · nicht rauchen.
- Öl und Kraftstoffrückstände vom Motor und vom Boden entfernen.

Warnung!: Feuergefahr

Kontakt mit Motoröl, Kraftstoff und Frostschutzmittel kann zur Gesundheitsschädigung führen. Deshalb:

- Hautkontakt mit Motoröl, Kraftstoff und Frostschutzmittel vermeiden.
- Öl und Kraftstoffspritzer umgehend von der Haut entfernen.
- Öl und Kraftstoffdämpfe nicht einatmen.

Elektrische Spannung LEBENSGEFAHR! -Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Die elektrischen Spannungen von über 48 V sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

Generator und Kühlwasser können bei und nach dem Betrieb heiß sein.

Durch den Betrieb kann sich im Kühlsystem ein Überdruck bilden.

Bei Wartungsarbeiten ist persönliche Schutzausrüstung zu Tragen. Hierzu gehört:

- Eng anliegende Schutzkleidung
- Sicherheitsschuhe
- Sicherheitshandschuhe
- · ggf. Schutzbrille

Um Schäden an den Geräten zu vermeiden, sind bei Arbeiten am Generator immer alle Verbraucher abzuschalten.

Batterien enthalten ätzende Säure und Laugen.

Durch unsachgemäße Behandlung können sich Batterien erwärmen und bersten. Ätzende Säure /Lauge auslaufen. Unter ungünstigen Bedingungen kann es zu einer Explosion kommen.

Beachten Sie die Hinweise Ihres Batterieherstellers.

Vorsicht!: Vergiftungsgefahr

Warnung: Elektrische Spannung

Achtung: Verletzungsgefahr!

Achtung: Schutzausrüstung erforderlich

Achtung: Alle Verbraucher abschalten

Warnung:

6.3 Entsorgung der Motorflüssigkeiten

Motorflüssigkeiten sind schädlich für die Umwelt.

Abgelassene Motorflüssigkeiten sammeln und fachgerecht entsorgen!

Der Umwelt zu liebe.

6.4 Wartungsintervalle

Die Wartungsintervalle entnehmen sie den "Allgemeinen Informationen für PMS Generatoren", die diesem Handbuch beiliegen.

Bei Generatoren mit variablen Serviceintervall (z. B. Generatoren mit iControl2 Steuerung) finden Sie weitere Informationen im Handbuch/Datenblatt des Fernbedienpanels.

Durch die variable Betriebsstundenanzeige können die Serviceintervalle um bis zu 30% (auf max. 200h) verlängert werden. Es ist sicherzustellen, dass die variable Betriebsstundenanzeige zwischen den Intervallen nicht unabsichtlich zurückgesetzt wird.

6.5 Allgemeine Wartungshinweise

6.5.1 Wartungsteile

Fig. 6.5.1-1: Maintenance Parts

FP Art No.	Maintenance Part
0015567	Valve Cover Gasket
0003990	Air Filter FP-320
0000651	Impeller set for pump F35B with O-seal and gasket
0003990	Fuel in line filter 8mm plastic housing
0004666	Oil Filter for FP-320

Fig. 6.5.1-2: Maintenance Kits

Art No 0015691	Service Kit PMS NEO (standard kit for 150h service)	Qty
0015567	Valve Cover Gasket	1
0004666	Oil Filter for FP-320	1
0003990	Fuel in line filter 8mm plastic housing	1
0015560	Air Filter FP-320	1
0000651	Impeller set for pump F35B with O-seal and gasket	1
	Storage box	

Art No	Service Kit Plus PMS NEO (advanced kit for 4x 150h service)	Qty
0015567	Valve Cover Gasket	4
0004666	Oil Filter for FP-320	5
0003990	Fuel in line filter 8mm plastic housing	4
0015560	Air Filter FP-320	4
0000651	Impeller set for pump F35B with O-seal and gasket	2
0000650	Service Kit for F35B-8	1
0003675	Fuse strip DIN 72581/2 030A, 41x11 mm	3
	Storage box	

6.5.2 Zu Prüfen vor jedem Start

- Ölstand
- Kühlwasserkreislauf (Schläuche, Leitungen, Anschlüsse

etc.) auf Leckagen prüfen.

- Visuelle Überprüfung des Ölsystems auf leckagen, des Zustandes vom Keilriemen, Luftfilter, Kabelverbindungen, Schläuche und Verbindungen des Kraftstoffsystems.
- Visuelle Überprüfung der mechanischen Befestigungen und Verbindungen, insbesondere der Schwingmetalle.

6.5.3 Kontrolle Schlauchelemente und Gummiformteile in der Schalldämmkapsel

Alle Schläuche und Schlauchverbindungen auf guten Zustand hin überprüfen. Die Gummischläuche sind sehr empfindlich gegen Umgebungseinflüsse. Sie können bei trockener Luft, in der Umgebung von leichten Öl- und Kraftstoffdämpfen und erhöhter Temperatur schnell altern. Die Schläuche müssen regelmäßig auf Elastizität geprüft werden. Es gibt Betriebssituationen, bei denen die Schläuche einmal im Jahr erneuert werden müssen.

6.6 Wartung des Seewasserkreislaufes

Nicht bei allen Modellen vorhanden

6.6.1 Seewasserfilter reinigen

Der Seewasserfilter sollte regelmäßig von Rückständen befreit werden. Dazu muss in jedem Fall vorher das Seeventil geschlossen werden. Meistens reicht es aus, das Filterkörbchen auszuklopfen.

Sollte durch den Deckel des Seewasserfilters Wasser sikkern, muss nach der Ursache für die Leckage gesucht werden. Im einfachsten Fall muss lediglich der Dichtring zwischen Verschlussdeckel und Filterhalter ausgetauscht werden. Auf keinen Fall darf der Wasserfilter mit Kleber oder Dichtungsmasse abgedichtet werden.

Beispielbild

6.7 Seewasserpumpe und Impeller

6.7.1 Ursachen bei häufigem Impellerverschleiß

1. Unsachgemäße Betriebsbedingungen

Der Impeller der Kühlwasserpumpe muss als Verschleißteil angesehen werden. Die Lebensdauer des Impellers kann extrem unterschiedlich sein und hängt ausschließlich von den Betriebsbedingungen ab. Die Kühlwasserpumpen der Fischer Panda Generatoren sind so ausgelegt, dass die Drehzahl der Pumpe im Vergleich zu anderen Aggregaten relativ niedrig liegt. Dies ist für die Lebensdauer der Pumpe ein positiver Effekt.

2. Lange Ansaugstrecke des Kühlwassers

Sehr ungünstig wirkt es sich auf die Lebensdauer des Impellers aber aus, wenn der Kühlwasseransaugweg relativ lang ist oder der Zufluss behindert ist, so dass im Kühlwasseransaugbereich ein Unterdruck entsteht. Dies kann erstens die Leistung der Kühlwasserpumpe extrem mindern und dazu führen, dass die Flügel des Impellers sehr starken Belastungen ausgesetzt sind. Dies kann die Lebensdauer extrem verkürzen.

3. Betrieb in verschmutztem Wasser

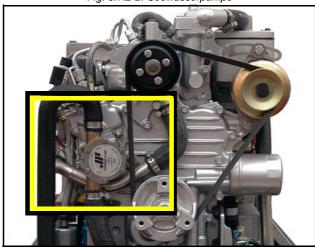
Weiterhin ist der Betrieb der Impellerpumpe in Gewässern mit einem hohen Anteil an Schwebstoffen sehr belastend. Besonders kritisch ist der Gebrauch der Impellerpumpe in Korallengewässern. Scharfe Kristallteile des Korallensands können sich in der Gummidichtung festsetzen und wie ein Schleifmittel auf den Edelstahlschaft der Impellerpumpe wirken.

4. Generator ist über der Wasserlinie montiert

Weiterhin ist für die Impellerpumpe besonders nachteilig, wenn der Generator über dem Wasserspiegel angeordnet wurde. Dadurch werden zwangsläufig nach dem ersten Start einige Sekunden vergehen, bis der Impeller Kühlwasser ansaugen kann. Diese kurze Trockenlaufzeit ist schädlich für den Impeller. Der erhöhte Verschleiß kann ebenfalls nach kurzer Zeit zum Ausfall führen (siehe besondere Hinweise: "Einwirkungen auf die Impellerpumpe, wenn der Generator über der Wasserlinie angeordnet ist")

6.7.2 Austausch des Impellers

Schließen Sie den Seewasser-Absperrhahn


Beispielbild

Seewasserpumpe auf der Vordeseite des Aggregates

Beispielbild

Entfernen Sie den Deckel der Seewasserpumpe, indem Sie die Schrauben auf dem Gehäuse lösen.

Beispielbild - siehe Kapitel A.2

Fig. 6.7.2-3: Gehäuse Seewasserpumpe

Ziehen Sie den Impeller mit einer Wasserpumpenzange von der Welle.

Markieren Sie den Impeller, um sicherzustellen, dass dieser bei einem evtl. Wiedereinbau in der richtigen Position eingesetzt wird.

Beispielbild

Kontrollieren Sie den Impeller auf Schäden und ersetzen Sie diesen, falls notwendig.

Vor dem Wiedereinsetzen in das Gehäuse sollte der Impeller mit Glyzerin oder einem nicht-mineralölbasierendem Gleitmittel geschmiert werden, z.B. Silikonspray.

Beispielbild

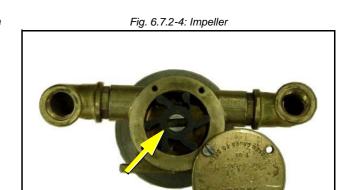
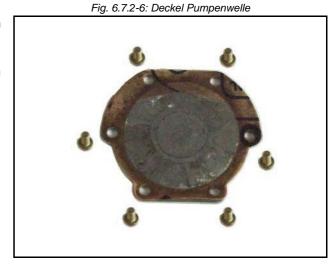


Fig. 6.7.2-5: Impeller



Der Impeller wird an der Pumpenwelle angebracht. (Wenn der alte Impeller weiter eingesetzt wird, muss man auf die vorher angebrachte Markierung achten).

Benutzen Sie eine neue Dichtung und befestigen Sie den Deckel..

Beispielbild

6.8 Motoröl prüfen und auffüllen

6.8.1 Ölstand Prüfen

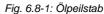
Sie benötigen:

Papiertücher / Putzlappen für den Ölpeilstab

Der Generator muss eben stehen.

- bei Fahrzeuggeneratoren: Stellen Sie das Trägerfahrzeug auf eine ebene Fläche.
- bei PSC Generatoren: Stellen Sie den Generator auf eine ebene Fläche.
- bei Marine Generatoren: Messen Sie den Ölstand, wenn das Schiff keine Kränkung hat oder fährt.

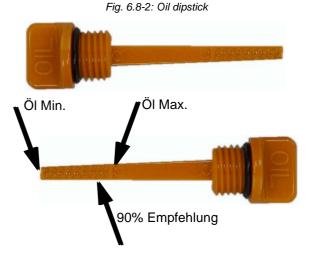
Betreiben sie den Generator für ca. 10 Minuten, um sicherzustellen das der Motor warm ist. Warten sie 3 Minuten, damit das Öl in die Ölwanne zurückfließen kann.


Generator und Kühlwasser können bei und nach dem Betrieb heiß sein.

Persönliche Schutzausrüstung Tragen (Handschuhe; Schutzbrille; Sicherheitskleidung und Sicherheitsschuhe)

- · Sichern Sie den Generator vor unbeabsichtigtem Start.
- öffnen Sie die Generatorkapsel.
- drehen Sie den Ölpeilstab aus der Führung.
- wischen Sie den Ölpeilstab sauber.

Achtung: Verbrennungsgefahr;


- stecken Sie den Ölpeilstab in die Führung zurück (nicht eindrehen) und warten 10 Sekunden.
- ziehen Sie den Ölpeilstab aus der Führung und lesen am unteren Ende den Ölstand ab.

Ölpeilstab FP320

Mithilfe des Ölpeilstabes ist der Ölstand zu überprüfen. Die vorgeschriebene Füllhöhe darf die "Max"-Markierung nicht überschreiten.

Wir empfehlen 90% Ölstand.

Liegt der Ölstand unter 50% zwischen der Minimummarkierung und der Maximummarkierung, sollte Öl nachgefüllt werden.

Fischer Panda empfiehlt einen Ölstand von 90% zwischen der Minimummarkierung und der Maximummarkierung.

Liegt der Ölstand unter der MIN-Markierung, prüfen Sie anhand Ihres Servicehandbuchs oder eines vorhandenen Ölwechselanhängers, wie viele Betriebsstunden seit dem letzten Ölwechsel vergangen sind. - bei Betriebsstunden zwischen 50 und 150 Stunden braucht nur Öl nachgefüllt werden.

- bei 150 Betriebsstunden oder mehr sollte das Öl gewechselt werden (Siehe Servicetabelle für Ihren Generator.
- ist der Füllstand bei weniger als 50 h unter der Minimummarkierung, kann ein technisches Problem vorliegen! Wir empfehlen, dann eine Werkstatt oder einen Fischer Panda Servicepoint aufzusuchen.
- ist das Öl stark trüb oder gar "sahnig", hat sich die Kühlerflüssigkeit möglicherweise mit dem Öl vermischt. Suchen sie sofort eine Werkstatt oder einen Fischer Panda Servicepoint auf.

6.8.2 Öl auffüllen

Sie benötigen:

Motorenöl

- 1. Prüfen Sie den Ölstand wie unter "Motoröl prüfen und auffüllen" auf Seite 76 beschrieben.
- 2. Ölpeilstab ist aus der Führung gezogen.
- 3. Öffnen sie den Öleinfülldeckel.
- 4. Füllen Sie das Öl (ca. 0,1 liter) ein und warten ca. 2 min, damit dieses bis in die Ölwanne laufen kann.
- 5. Wischen Sie den Ölpeilstab sauber und stecken Sie ihn in die Führung.
- 6. Ziehen Sie den Ölpeilstab aus der Führung und kontrollieren Sie den Ölstand. Siehe "Motoröl prüfen und auffüllen" auf Seite 76.

Ist der Ölstand noch zu niedrig (unter 90%): Wiederholen Sie die Schritte 4-6.

6.8.3 Nach der Ölstandskontrolle und dem Ölauffüllen

- Drehen Sie den Ölpeilstab zurück in die Führung.
- Schließen Sie den Öleinfülldeckel.
- Entfernen Sie eventuell Ölflecken und Spritzer vom Generator und Umgebung.
- Schließen Sie die Generatorkapsel.
- Entfernen Sie die Sicherung gegen unbeabsichtigten Start des Generators.

6.9 Wechseln des Motorenöls und des Motorölfilters

Sie benötigen:

- Motorenöl. Siehe Anhang
- Neuer Ölfilter (nicht bei Generatoren mit EA300 Motoren)
- Dichtung für die Ölablassschraube
- Persönliche Schutzausrüstung
- Gefäß zum Auffangen des Altöls (hitzebeständig und in ausreichender Größe
- Gabelschlüssel für die Ölablassschraube.
- Papiertücher und Putzlappen
- Ölfilterschlüssel
- Ölfeste Unterlage, damit Altöl nicht in das Grundwasser gelangen kann.

Der Generator muss waagerecht stehen.

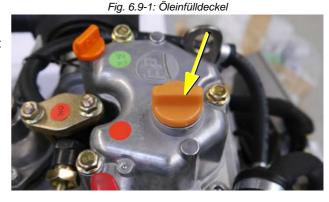
- bei Fahrzeuggeneratoren: Stellen Sie das Trägerfahrzeug auf eine ebene Fläche.
- bei PSC Generatoren: Stellen Sie den Generator auf eine ebene Fläche.
- bei Marine Generatoren: Wechseln sie das Öl, wenn das Schiff keine Kränkung hat oder fährt.

Betreiben sie den Generator bis die Motortemperatur 60°C beträgt.

Generator und Kühlwasser können bei und nach dem Betrieb heiß sein.

Persönliche Schutzausrüstung Tragen (Handschuhe; Schutzbrille; Sicherheitskleidung und Sicherheitsschuhe) Achtung: Verbrennungsgefahr!

- 1. Generator vorbereiten.
 - Sichern Sie den Generator vor unbeabsichtigtem Start.
 - öffnen Sie die Generatorkapsel.
 - Bei Generatoren mit außen liegendem Ölablassschlauch: Lösen sie den Ölablassschlauch aus der Halterung.
 - Bei Generatoren mit innen liegendem Ölablassschlauch: Öffnen Sie die Durchführung für den Ölablassschlauch (Linksdrehen des Verschlusses). Ziehen Sie den Verschluss mit dem Ölablassschlauch heraus.


Legen Sie die ölfeste Unterlage unter den Bereich des Ölablassschlauches und stellen Sie das Auffanggefäß bereit.

2. Öleinfülldeckel lösen

Schrauben Sie den Öleinfülldeckel ab. Dies ist notwendig, da sich sonst ein Vakuum bildet und das Öl nicht vollständig ablaufen kann.

Beispielbild

3. Ölablassschraube öffnen.

Schrauben Sie die Ölablassschraube mithilfe der Maulschlüssel vom Ölablassschlauch (Drehrichtung links)Zum Kontern verwenden sie einen zweiten Maulschlüssel. Achten Sie darauf, dass dieses über dem Auffanggefäß geschieht.

Fig. 6.9-2: Ölablassschlauch

4. Altöl ablassen.

Lassen Sie das gesamte Öl aus dem Motor ablaufen. Dies kann einige Minuten dauern.

5. Alten Ölfilter entfernen / Ölsieb reinigen

Lösen Sie den Ölfilter, indem Sie den Filterschlüssel gegen den Uhrzeigersinn drehen. Der Filter kann voller Öl sein. Achten Sie also darauf, nichts zu verschütten und vermeiden Sie Hautkontakt.

Fig. 6.9-3: Ölfilter

Beispielbild

6. Neuen Filter vorbereiten.

Reinigen Sie den Filterhalter des Motors und streichen Sie eine dünne Ölschicht auf die Dichtung des neuen Filters.

Fig. 6.9-4: Ölfilter Dichtungsring

7. Neuen Filter einbauen.

Schrauben Sie den neuen Filter per Hand vorsichtig ein. Er darf nicht zu fest angezogen werden. Schrauben Sie die Ölablassschraube wieder ein und ziehen Sie sie mit dem Schlüssel fest. Verwenden Sie eine neue Dichtung für die Ölablassschraube.

8. Öl einfüllen (Ölfüllmenge: siehe Anhang)

Füllen Sie mithilfe eines Trichters Motorenöl in den Motor ein. Überprüfen Sie nach jeweils zwei Litern den Ölstand mit dem Ölpeilstab.

9. Korrekten Füllstand überprüfen. Siehe "Motoröl prüfen und auffüllen" auf Seite 76.

Wenn der korrekte Füllstand erreicht ist, schrauben Sie den Öldeckel wieder fest. Lassen Sie den Motor 10 Minuten lang laufen und schalten Sie ihn dann aus. Überprüfen Sie den Ölstand noch einmal nach ein paar Minuten mit dem Ölpeilstab. Ist er zu niedrig, füllen Sie nochmal Öl nach.

10. Aufräumen

Wischen Sie alle Ölspritzer vom Generator ab und gehen Sie sicher, dass an der Ablassschraube kein Leck ist.

6.9.1 Nach dem Ölwechsel

- Drehen Sie den Ölpeilstab zurück in die Führung.
- Schließen Sie den Öleinfülldeckel.
- Entfernen Sie eventuell Ölflecken und Spritzer vom Generator und Umgebung.
- Schließen Sie die Generatorkapsel.
- Entfernen Sie die Sicherung gegen unbeabsichtigten Start des Generators
- Altöl und Filter ordnungsgemäß entsorgen.

Altöl ist sehr giftig und darf nicht über den Hausmüll entsorgt werden. Es ist verboten, Altöl über die Abwasseranlage zu entsorgen! Achten Sie auf eine korrekte Entsorgung des Altöls (z. B. dort, wo das Öl gekauft wurde, oder Recyclinghof in Ihrer Nähe).

6.10 Überprüfen des Wasserabscheiders in der Kraftstoffleitung

Der Vorfilter mit wasserabscheider hat einen Ablashahn an der unterseite, um das abgeschiedene Wasser abzulassen.

Da das Wasser schwerer als der Kraftstoff ist, sinkt es im Vorfilter zu Boden und sammelt sich dort im Wasserabscheider.

Sample picture

6.10.1 Austausch des Kraftstoff Feinfilters

Der Austauschintervall muss je nach Kraftstoffqualität erfolgen. Darf aber 300h Betriebsstunden auf keinen Fall überschreiten.

Der zufluss muss vor dem Tausch abgeklemmt werden.

Nach dem Lösen der Schlauchklemmen sind die schläuche von beiden Enden des Kraftstofffilers abzuziehen und auf den neuen filter aufzuschieben. Der Pfeil auf dem Filter zeigt die Durchflussrichtung an. Zum Abschluss werden die Schläuche wieder mit Schlauchklemmen gesichert..

6.11 Entlüften des Kraftstoffsystems

Grundsätzlich ist das Kraftstoffsystem selbstentlüftend, d.h. es muss nur der elektrische Starter bedient werden, und durch die Förderung der Kraftstoffpumpe wird sich nach einiger Zeit das Kraftstoffsystem automatisch entlüften. Es ist aber dennoch notwendig, bei der ersten Inbetriebnahme, wenn die Leitungen leer sind, das folgende Verfahren durchzuführen.

1. Unter der Kraftstoff Rücklaufleitung muss ein Behälter gestellt werden, um auslaufenden Kraftstoff aufzufangen.

Beispielbild

2.)Starten der Kraftstoffpumpe

Die externe Kraftstoffpumpe kann über einen Menüpunkt desd iControl2 Panels aktiviert werden. Siehe iControl2 Handbuch für Details.

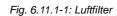
Beispielbild

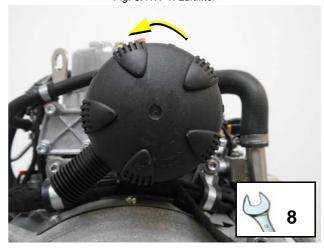
- 3.) Warten Sie bis der Kraftstoff blasenfrei aus der Rücklaufleitung austritt.
- 4.) Schalten Sie die Kraftstoffpumpe über das Panel wieder aus.

Dieser Vorgang muss mehrmals wiederholt werden, bis an der Kraftstoff Rücklaufleitung Kraftstoff einwandfrei (blasenfrei) austritt.

Jetzt kann die Maschine durch Betätigen der Anlassertaste gestartet werden. Die Maschine sollte jetzt nach kurzer Zeit starten.

Hinweiß




Hinweis:

6.11.1 Austausch des Luftfilters

Die Kappe des Luftfiltergehäusesca. 20° gegen die Uhrzeigerrichtung drehen und abnehmen.

Herrausnehmen des Filters.

Das luftfiltergehäuse muss bei jedem wechsel gereinigt werden.

Nach dem ersetzen des kuftfilters das gehäuse schließen.

6.12 Entlüften des Frischwassersystems

SDer Panda 5000i.Neo ist selbst entlüftent.

6.13 Wartung des Seewasserkreislaufes

6.13.1 Seewasserfilter reinigen

Der Seewasserfilter sollte regelmäßig von Rückständen befreit werden. Dazu muss in jedem Fall vorher das Seeventil geschlossen werden. Meistens reicht es aus, das Filterkörbchen auszuklopfen.

Sollte durch den Deckel des Seewasserfilters Wasser sickern, darf dieser auf keinen Fall mit Kleber oder Dichtungsmasse abgedichtet werden. Vielmehr muss nach der Ursache für die Leckage gesucht werden. Im einfachsten Fall muss lediglich der Dichtring zwischen Verschlussdeckel und Filterhalter ausgetauscht werden.

Beispielbild

6.13.2 Seewasserpumpe und Impeller

6.13.2.1 Ursachen bei häufigem Impellerverschleiß

1. Unsachgemäße Betriebsbedingungen

Der Impeller der Kühlwasserpumpe muss als Verschleißteil angesehen werden. Die Lebensdauer des Impellers kann extrem unterschiedlich sein und hängt ausschließlich von den Betriebsbedingungen ab. Die Kühlwasserpumpen der Fischer Panda Generatoren sind so ausgelegt, dass die Drehzahl der Pumpe im Vergleich zu anderen Aggregaten relativ niedrig liegt. Dies ist für die Lebensdauer der Pumpe ein positiver Effekt.

2. Lange Ansaugstrecke des Kühlwassers

Sehr ungünstig wirkt sich auf die Lebensdauer des Impellers aber aus, wenn der Kühlwasseransaugweg relativ lang ist oder der Zufluss behindert ist, so dass im Kühlwasseransaugbereich ein Unterdruck entsteht. Dies kann erstens die Leistung der Kühlwasserpumpe extrem mindern und dazu führen, dass die Flügel des Impellers sehr starken Belastungen ausgesetzt sind. Dies kann die Lebensdauer extrem verkürzen.

3. Betrieb in verschmutztem Wasser

Weiterhin ist der Betrieb der Impellerpumpe in Gewässern mit einem hohen Anteil an Schwebstoffen sehr belastend. Besonders kritisch ist der Gebrauch der Impellerpumpe auch in Korallengewässern. Uns sind Fälle bekannt, in denen eine Impellerpumpe nach 100 Stunden bereits so stark eingelaufen war, dass die Lippendichtung auf der Welle eingeschliffen war. In diesen Fällen setzen sich scharfe Kristallteile des Korallensands in der Gummidichtung fest und wirken wie ein Schleifmittel auf den Edelstahlschaft der Impellerpumpe.

4. Generator ist über der Wasserlinie montiert

Weiterhin ist für die Impellerpumpe besonders nachteilig, wenn der Generator über dem Wasserspiegel angeordnet wurde. Dadurch werden zwangsläufig nach dem ersten Start einige Sekunden vergehen, bis der Impeller Kühlwasser ansaugen kann. Diese kurze Trockenlaufzeit beschädigt den Impeller. Der erhöhte Verschleiß kann ebenfalls nach kurzer Zeit zum Ausfall führen (siehe besondere Hinweise: "Einwirkungen auf die Impellerpumpe, wenn der Generator über der Wasserlinie angeordnet ist")

6.13.3 Austausch des Impellers

Schließen Sie den Seewasser-Absperrhahn

Beispielbild

Fig. 6.13.3-1: Seewasser-Absperrhahn

Seewasserpumpe auf der Vordeseite des Aggregates

Beispielbild

Fig. 6.13.3-2: Seewasserpumpe

Entfernen Sie den Deckel der SeewasserPumpe, indem sie die Schrauben auf dem Gehäuse lösen.

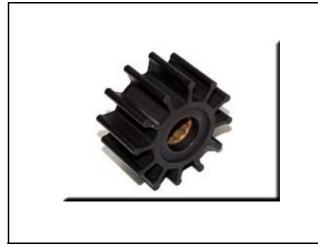
Beispielbild - siehe Kapitel A.2

Ziehen Sie den Impeller mit einer Wasserpumpenzange von der Welle.

Markieren Sie den Impeller, um sicherzustellen, dass dieser bei einem evtl. Wiedereinbau in der richtigen Position eingesetzt wird.

Fig. 6.13.3-4: Impeller

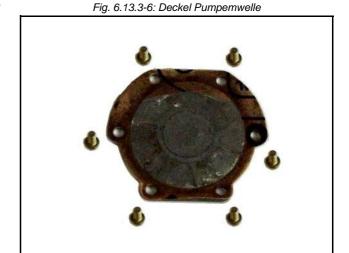



Beispielbild

Kontrollieren Sie den Impeller auf Schäden und ersetzen Sie diesen, falls notwendig.

Vor dem Wiedereinsetzen in das Gehäuse sollte der Impeller mit Glyzerin oder einem nicht-mineralölbasierendem Gleitmittel geschmiert werden, z.B. Silikonspray.

Beispielbild



Der Impeller wird an der Pumpenwelle angebracht. (Wenn der alte Impeller weiter eingesetzt wird, muss man auf die vorher angebrachte Markierung achten).

Befestigen Sie den Deckel und benutzen Sie eine neue Dichtung.

Beispielbild

7. Tabellen

7.1 Anschlussdurchmesser

Fig. 7.1-1: Anschlussdurchmesser

Generator type	Ø Kühlwasserleitung		Ø Abgas Ausgang [mm]	Ø Kraftstoffleitung	
		Vorlauf/ Entlüftung [mm]		Vorlauf [mm]	Rücklauf [mm]
Panda 5000i.Neo PMS	20	10/8	40	8	8

7.2 Technische Daten

Fig. 7.2-1: Technische Daten

	Panda 5000i.Neo	Panda 4000S.Neo
Туре	FPE-320	FPE-320
Drehzahlregelung	I Control 2	mecanical
Automatischer Startbooster	no	no
Zylinder	1	1
Bohrung	78 mm	78 mm
Hub	64 mm	64 mm
Hubraum	309 cm ³	309 cm ³
max. Leistung (DIN 6270-NB) bei 3000Upm	4,0 kW @3250 rpm	3,4 kW @3000 rpm
Nenndrehzahl	3250 rpm	3100 rpm
Leerlaufdrehzahl	2500 rpm	2850 rpm
Ventilspiel (engine cold)	in:0,15; ex: 0,15	in:0,15 ; ex: 0,15
Motorölvolumen	2,11	2,11
Kraftstoffverbrauch	on request	-
Ölverbrauch	max. 1 % of Fuel consumption	
Mororöl	SAE 15W-40 ACEA A3/B3 recommend: Castrol GTX	SAE 15W-40 ACEA A3/B3 recommend: Castrol GTX
Kühlwasserbedarf des Seewasserkreislaufes (bei Marine Generatoren)	ca. 13 l/min	ca. 13 l/min
Maximale Dauerschräglage	a) 20° gegen die Motorachse b) 20° in der Motorachse	
Empfohlene Starterbatteriegröße	12 V 55 Ah	12 V 55 Ah
Batteriekabel Länge :max 4m.	Min 35 mm² empfohlen 55mm²	Min 35 mm² empfohlen 55mm²
Maximaler Abgasgegendruck	9,3 kPa 93 Millimbar	9,3 kPa 93 Millimbar

7.2.1 Anzugsmomente FPE-320

Fig. 7.2.1-1: Anzugsmomente FPE-320

Valve Cover	Ventildeckel	9,5 Nm	(all screws M6x1.0, when tightening part is
			aluminum)

Rocker	Kipphebel	11Nm	
Connecting rod nuts	Pleulmuttern	23Nm	
Cylinderhead nuts	Zylinderkopf	49Nm	
Fuel injection nozzle	Einspritzdüse	10Nm	
Fuel injection pump	Einspritzpumpe	10Nm	
Fuel pump delivery valve	Vordruckventil	30Nm	

7.3 Verschaltung der Wicklung

HP3 delta connection

Fig. 7.3-1: HP3 delta connection

L1

W2

U1

U2

V2

V1

L2

7.4 Motoröl

7.4.1 Motoröl Spezifikation

Vollmineralisch SAE15W-40 ACEA A3/B3

Fischer Panda empfiehlt Castrol GTX

7.4.2 Kraftstoff

Als Kraftstoff ist sauberes, dünnflüssiges Dieselöl nach DIN590:1999 oder besser zu verwenden. Bei Generatoren mit Common-Rail Technik und/oder Dieselpartikelfilter nach DIN590:2009 oder besser.

Verwenden Sie keine alternativen Kraftstoffe, da diese in der Qualität unbekannt und somit unter Umständen qualitativ schlechter sind. Kraftstoffe mit einer niedrigen Cetanzahl beeinträchtigen die Funktion des Generators.

7.5 Kühlwasser

Als Kühlmittel muss eine Mischung aus Wasser und Frostschutz benutzt werden. Das Frostschutzmittel muss für Aluminium geeignet sein. Im Interesse der Sicherheit muss die Konzentration der Frostschutzlösung regelmäßig überprüft werden.

Fischer Panda empfiehlt das Produkt: GLYSANTIN PROTECT PLUS/G 48

7.5.1 Empfohlenes Frostschutzmittel

Kühlerschutz Kfz Industrie	Produktbeschreibung	
Produktname	GLYSANTIN ® PROTECT PLUS / G48	
Chemie	Monoethylenglykol mit Inhibitoren	
Lieferform	Flüssigkeit	

Chemische und physikalische Eigenschaften			
Alkalireserve von 10 ml	ASTM D 1121	13 – 15 ml HCl 01 mol/l	
Dichte, 20°C	DIN 51 757 Verfahren 4	1,121 - 1,123 g/cm ³	
Wassergehalt	DIN 51 777 Teil 1	Max. 3,5 %	
pH-Wert original	AST M D 1287	7,1 – 7,3	

7.5.2 Verhältnis Kühlwasser/Frostschutz

Wasser/Frostschutz	Temperatur
70:30	-20 °C
65:35	-25 °C
60:40	-30 °C
55:45	-35 °C
50:50	-40 °C

8. Inverter Panda PMGi 5000

Fischer Panda	Art Nr.	21.07.03.034P
Fischer Panda	Bez.	Panda PMGi 5000

	Dokument	Hardware	Software
Aktuell:	R04		
Ersetzt:	R03		

8.1 Sicherheitshinweise

Der Generator darf nicht mit abgenommener Abdeckhaube in Betrieb genommen werden.

Sofern der Generator ohne Schalldämmgehäuse montiert werden soll, müssen die rotierenden Teile (Riemenscheibe, Keilriemen etc.) so abgedeckt und geschützt werden, dass eine Verletzungsgefahr ausgeschlossen wird.

Falls vor Ort ein Schalldämmumbau angefertigt wird, muss durch gut sichtbar angebrachte Schilder darauf hingewiesen werden, dass der Generator nur mit geschlossenem Schalldämmgehäuse eingeschaltet werden darf.

Alle Service-, Wartungs- oder Reparaturarbeiten am Aggregat dürfen nur bei stehendem Motor vorgenommen werden.

Die elektrischen Spannungen von über 48V sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

Es muss immer die Batterie abgeklemmt werden (zuerst Minus- dann Pluspol), wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

Elektrische Spannung LEBENSGEFAHR!

8.2 Typenschild

1. Typenschild am PGMi

Fig. 8.2-2: Typenschild

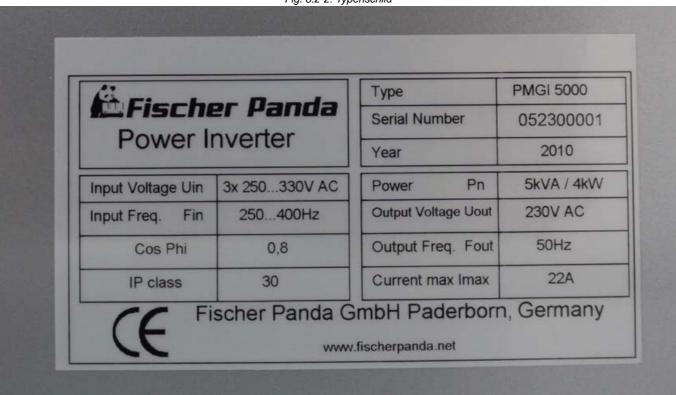


Fig. 8.2-3: Type plate 120V 60 Hz version

Fischer Panda Power Inverter		Туре	PMGI 5000
		Serial Number	051200001
rowel illy	erter	Year	2010
Input Voltage Uin 3x	140250V AC	Power Pn	5kVA / 4kW
Input Freq. Fin	250400Hz	Output Voltage Uout	120V AC
Cos Phi	0,8	Output Freq. Fout	60Hz
IP class	30	Current max Imax	41,6A
Fisch	er Panda G	mbH Paderborr	Germany

8.3 Anschlussseite/Unterseite

Zum Anschluss Panda PMGi 5000 ist der Generator mit dem vorbereiteten Kabel (Stecker 4pol) mit der Buchse 3 zu verbinden (450V / 400Hz Seite)

Der Bordverteilerkasten ist mit der Buchse 1 (Stecker 3 pol) zu verbinden. (230V/50Hz AC Seite - PMGi Ausgang)

Das Lüftungsgitter (2) muss immer frei sein.

- 1. Buchse für Last
- 2. Lüftungsgrill
- 3. Buchse für Generator Anschluss
- 4. FP- Bus Buchse für Generator Anschluss

Fig. 8.3-1: Anschlussseite 230 V Version

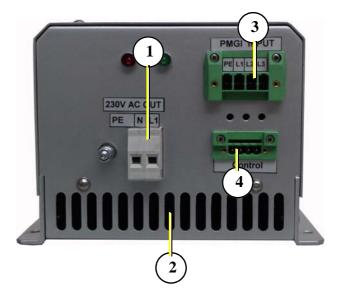
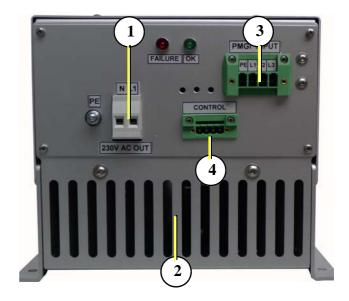
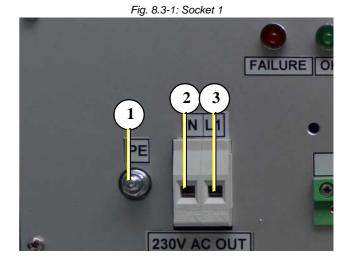



Fig. 8.3-2: Connection side 120V Version

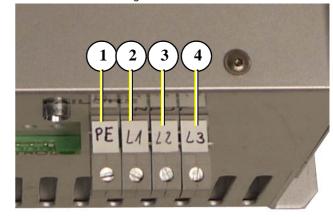


8.3.1 Buchsenbelegung des PMGi 5000

Buchse 1 - 230V / 50Hz AC - PMGi Ausgang

- 1. SchutzleiterSchutzleiter (Kabel Grün/Gelb)
- 2. Null (Kabel Blau)
- 3. Phase (Kabel Braun)

Achtung!



Das Aufschalten einer Phase auf Pin1 (Schutzleiter) zerstört den PMGi.

Buchse 3 - PMGi Eingang

- 1. Schutzleiter
- 2-4. Phase 1-3

Fig. 8.3-2: Buchse 3

8.4 Rückseite

Fig. 8.4-1: Rückseite

Der Panda PMGi ist mit einem internen Lüfter ausgestattet. Die entsprechenden Lüftungsbohrungen auf der Oberseite dürfen nicht abgedeckt werden

01. Luftbohrungen

Durch den Generator liegt am PMGi eine lebensgefährliche Spannung von bis zu 750 V an. Das Gehäuse des PMGi darf nur vom ausgebildeten Fachpersonal geöffnet werden !!!LEBENSGEFAHR!!!

Achtung!

Stellen Sie sicher, dass der PMGi elektrisch fest mit dem Achtung! Generator verbunden ist. Der PMGi darf nicht bei laufendem Generator an oder ausgeschaltet werden. Dies kann den PMGi schädigen oder zerstören. (mögliche Brand oder Explosionsgefahr)

8.5 Einstellungen zum Betrieb von iGeneratoren mit Lade/Wechselrichtern

Beim Betrieb mit Lade-/Wechselrichtern müssen die Einstellungen der Lade-/Wechselrichter entsprechend angepasst werden, um einen Betrieb mit den PMGi Invertern zu gewährleisten. Achtung! Falsche Einstellungen können den PMGi zerstören

Falsche Einstellungen können den PMGi Inverter beschädigen oder zerstören.

Die Einstellungsbeispiele für Victron müssen für andere Lade/Wechselrichter entsprechend angepasst werden.

8.5.1 Einstellungen in der Victron VE Configure II Software - General

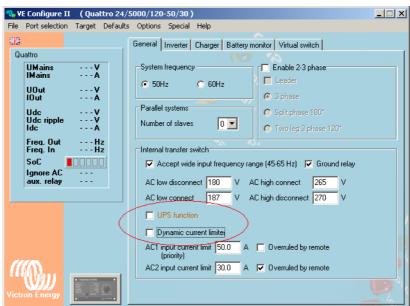


Fig. 8.5.1-1: Einstellungen in der Victron VE configure II Software

8.5.1.1 Uninterrupted AC power (UPS funktion)

Durch das zu schnelle Umschalten von Generator auf Landstrom kommt es zu einer Überlastung des PMGi. Der PMGi schaltet mit Fehler ab.

UPS Funktion muss deaktiviert sein.

8.5.1.2 Dynamic current limiter

Dynamic current limiter führt bei induktiver Belastung zur Spannungserhöhung im DC-Zwischenkreis. Die damit verbundene Überspannung kann den PMGi schädigen oder zerstören.

Dynamic current limiter muss deaktiviert sein.

8.5.2 Einstellungen in der Victron VE Configure II Software - Inverter

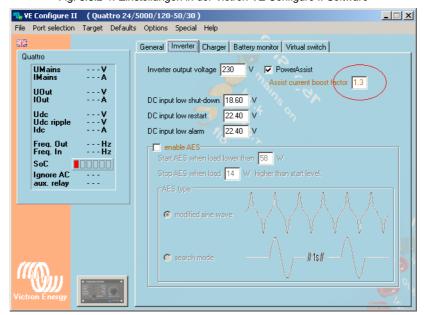


Fig. 8.5.2-1: Einstellungen in der Victron VE Configure II Software

8.5.2.1 Assist current boost factor

Um den Einfluss des Lade-/Wechselrichters auf die Steuerung des Generator zu minimieren, muss der Assist current boost factor von 2.0 auf 1.3 eingestellt weden. Eine falsche Einstellung führt zu einem schlechten Regelverhalten des Generators.

8.6 Betriebsanleitung

8.6.1 Vorbemerkungen/Winterbetrieb

Der PGMi ist für einen Temperaturbereich von -20°C bis +40°C ausgelegt.

8.6.2 Belastung des PMGi

Bitte achten Sie darauf, dass der PMGi nicht überlastet wird. In diesem Falle schaltet der PMGi ab.

8.6.3 Automatikstart

Der Generator kann (je nach Fernbedienpanel) durch eine Automatikstart funktion gestartet werden.

Beim Nutzen der Autostart Funktion muss sichergestellt sein, dass es zu keiner Überlastung des PMGi kommt. (z.B. durch erhöhte Anlaufströme der angeschlossenen Geräte)

Es ist sicherzustellen, dass die Last erst auf den PMGi geschaltet wird, wenn die nominale Ausgangsspannung (230V / 50Hz) erreicht ist. (z.B. durch ein Schütz, das erst bei 230V anzieht)

8.7 LED Anzeigen

Red - Green

	Die LED Lichter leuchtet in den ersten Sekunden nach dem Start des Generators (ca. 10 sek.). Die LED-ROT fängt an zu blinken, wenn eine Überlast am PMGi anliegt. Die LED-GRÜN leuchtet währenddessen weiter. Wenn die Überlast zu lange anliegt, wechselt die LED-Rot von blinkend zu permanent an und die LED-GRÜN geht aus.
LED-Grün	Die LED-GRÜN leuchtet permanent wenn die Ausgangsspannung des PMGi da ist und sich im Rahmen der Spezifikation befindet.

8.8 Kühlung PMGi

Im Inneren des PMGi ist ein Lüfter verbaut.

Die Lüftungsschlitze und Bohrungen am Gehäuse das PMGi dürfen nicht abgedeckt werden.

Der Kühlkörper und der Lüfter können durch den normalen Generatorbetrieb verschmutzen, was ihre Kühleigenschaft vermindert. Es ist nötig alle 6 Monate eine Sichtprüfung durchzuführen und diese Teile gegebenenfalls mit Druckluft zu reinigen

Beim normalen Generator Service sollten die Teile auch gründlich gereinigt werden. Da in der PMGi eine Lebensgefährliche Spannung anliegt ist dieses nur vom ausgebildeten Fachpersonal durchzuführen.

8.9 Installation des PMGi

Der PMGi ist senkrecht zu montieren, so dass die elektrischen Anschlüsse nach unten zeigen und die Schrift auf dem Gehäuse lesbar ist.

Die Oberfläche der Wandung sollte eben sein und die Wärmeableitung unterstützen. Die Lüftungsschlitze und Bohrungen müssen frei sein und eine ausreichende Frischluftzufuhr und Warmluftableitung ist zu gewährleisten.

Zum Montieren sind die vier Montagelöcher mit einem Durchmesser von 6,5mm zu verwenden.

Beachten Sie bei der Installation die Sicherheitshinweise Wichtig! im Generator und PMGi Handbuch

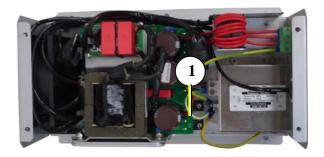
Beachten Sie die örtlichen und nationalen Einbauvorschriften. Elektroinstallationen dürfen nur von ausgebildeten Fachkräften ausgeführt werden.

8.9.1 Elektrischer Anschluss

Die elektrischen Anschlüsse dürfen nur vom Fachmann ausgeführt werden. Nationale Bestimmungen und die Sicherheitshinweise im Generatorhandbuch sind zu beachten.

Sollte eine Kabelverlängerung durchgeführt werden, so ist auf der PMGi Ausgangsseite ein isoliertes Feuersicheres Gummikabel zu verwenden. Die Kabellänge und der Kabelquerschnitt sind vom Spannungsabfall abhängig. Der Spannungsabfall im Kabel darf 2,5% der Nominalspannung nicht überschreiten.

Beachten Sie die Pinbelegung der Buchsen. Siehe "Buchsenbelegung des PMGi 5000" auf Seite 95


8.9.1.1 Anschluss an ein RCD überwachtes System

Der PMGi ist vorbereitet für den Anschluss an ein RCD überwachtes System.

Der Ausgang des PMGi (PE,N,L) ist 1:1 mit dem Eingang der Unterverteilung auf der Kundenseite zu verbinden. Hierbei werden Phase und Neutralleiter (L,N) mit dem Eingang des RCD verbunden. Der PE wird mit dem PE in der Unterverteilung verbunden. Nach der Installation ist die Funktion des RCD zu testen.

PE-N Brücke Fig. 8.9-1: PE-N Brücke

Innerhab des PMGi ist eine PE-N Brücke verbaut.

8.9.1.2 Anschluss an Systeme mit Isolationsüberwachung.

Für den Einsatz des PMGi in einem isolations überwachten Netz, muss die interne PE-N Brücke im PMGi entfernt werden.

Eine entsprechende Anleitung zum Entfernen der PE-N Brücke können Sie unter:

 $http://www.fischerpanda.de/images/gensets/M_AC_50_INV_PMS_8000i/operatormanual/PMGi/Modification_PMGi_isolation_control.deu.pdf$

herunterladen.

8.10 Technische Daten

8.10.1 Allgemeine Daten

PMGi gehört zum Fischer Panda 8000i und darf an anderen Generatoren / für andere Zwecke nur mit Einschaltstrombegrenzung eingesetzt werden..

Lagertemperatur	PMGi	-20°C bis +55°C
Arbeitstemperatur	PMGi	Minimum: -20°C
		Maximum: +40°C
		Maximale interne Temperatur des PMGi: +60°C

8.10.2 Generator Spezifikation

PMG Generator Ausgang		3 Phasig
Spannung pro Phase	minimum 250V AC	Maximum 330V AC
Ausgangs Frequenz	minimum 250 Hz	Maximum 400 Hz

8.10.3 PMGi Ausgangs-Spezifikation

Fig. 8.10.3-1: Technische Daten PMGit / Technical data PMGi / PMGi Out

		PMGi 5000 230 V	PMGi 5000 110 V	PMGi 5000 120 V
Nominale Ausgangsspannung Nominal Voltage Tension de sortie nominale:	NOV _{AC}	230 V VAC +/- 5 % ohne Last / without Load / sans charge	110 V VAC +/- 5 % ohne Last / without Load / sans charge	120 V VAC +/- 5 % ohne Last / without Load / sans charge
Regelung Regulation Réglage	R	5 %	5 %	5 %
Stabilität (Kurzzeit (30sec)) Stability (short term (30sec)) Stabilité (courte durée (30s))	D _s	5 %	5 %	5 %
Stabilität (Langzeit (4h)) Stability (Long term (4h)) Stabilité (longue durée (4h))	D _I	5 %	5 %	5 %
Spannungsabweichung Voltage offset Divergence de tension	V _{offset}	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C	+-5 V -20 °C bis +40 °C +-5 V -20 °C to +40 °C +-5 V -20 °C à +40 °C
Stromstärke Current Courant	Stromstärke _{Nominal} Current _{Nominal} Courant _{Nominal}	17,4 A @230V _{eff.}	36,4 A @110 V _{eff.}	33,4 A @120 V _{eff.}
	Stromstärke _{Maximum} Current _{Maximum} Courant _{Maximum}	22 A @ cos phi 0,8 @230 V _{eff.}	46 A @ cos phi 0,8 @110 V _{eff.}	42,2 A @ cos phi 0,8 @120 V _{eff.}

		PMGi 5000 230 V	PMGi 5000 110 V	PMGi 5000 120 V
Leistung Power Puissance	Nominal Nominal power Nominale	5,0 kVA	5,0 kVA	5,0 kVA
	Dauer Long term	3,6 kW	3,6 kW	3,6 kW
Frequency Fréquence	Nominale Frequenz Nominal Frequency Fréquence nominale	50 Hz +/-2 %	60 Hz +/-2 %	60 Hz +/-2 %
	Regulierung Regulation Réglage	4 %	4 %	4 %
	Stabilität (Kurzeitig) (30 s)) Stability (short term (30 s)) Stabilité (courte durée (30 s))	3 %	3 %	3 %
	Stabilität (Langzeit (4 h)) Stability (Long term (4 h)) Stabilité (longue durée (4 h))	3 %	3 %	3 %
Krestfaktor ¹⁾ Crestfactor ¹⁾ Facteur de crête		3:1	3:1	3:1
Empfohlene Absicherung Recommend protection fuse Sécurisation recommandée		25 A	50 A	50 A
Empfohlener Kabelquerschnitt Recommend cable cross Section de câble recommandée		2,5 mm²	10 mm²	10 mm²
Umgebungstemperatur max. Ambient temperature		40 °C	40 °C	40 °C

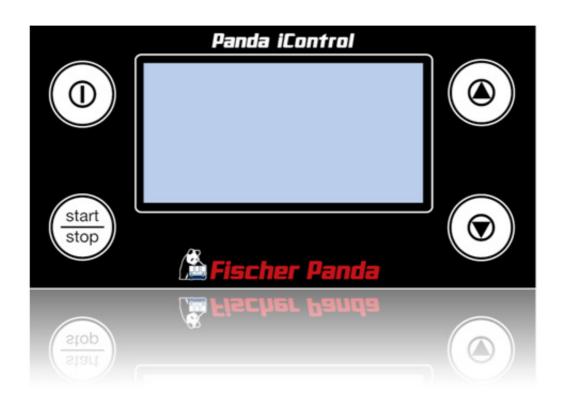
¹⁾ Peak Strom darf den 3-fachen Nennstrom erreichen

8.10.4 Überlastung

Ausgangsart	Max. Stromstärke	Kommentare
230VAC		Wenn die Sicherheitsschaltung angesprochen hat, muss der Generator ausgeschaltet und alle Verbraucher getrennt werden.

8.10.5 Kurzschluss

Damit die Kurzschluss-Sicherheitsschaltung aktiv sein kann, muss eine Sicherung im stromführenden Kabel eingebaut werden. Spezifikation der Sicherung:.


Nennstrom	1.2	1.5	2.75	4.0	10.0
26A	>1h	<30min	5ms to 150ms	2ms to 15ms	<2ms

Wichtig! Die elektrischen Daten des Systems basieren auf den Daten, die in den "Allgemeinen Daten" beschrieben sind. Setzen Sie das PMGi keinen Temperaturschocks aus. Hinweis!

¹⁾ Peak current is allowed to reach 3 times of the nominal current

Panda iControl2

Bedienungsanleitung

Steuerungs- und Regelungssystem für Fischer Panda Generatoren

Panda iControl2_deu.R08

20.8.19

Aktueller Revisionsstand

	Dokument	
Aktuell:	Panda iControl2_deu.R08_20.8.19	
Ersetzt:	Panda iControl2_deu.R06	

Revision	Seite	
Kontrolltätigkeiten vor dem Start hinzugefügt		
Emergency stop, Fehlerspeicher, Master Slave eingepflegt. Revisionsstand an eng angeglichen R08		

Hardware

Generator	Revision	Modification Strike Plate	Datum	Upgrade

Erstellt durch / created by

Fischer Panda GmbH - Leiter Technische Dokumentation

Otto-Hahn-Str. 32-34

33104 Paderborn - Germany

Tel.: +49 (0) 5254-9202-0

email: <u>info@fischerpanda.de</u> web: <u>www.fischerpanda.de</u>

Copyright

Vervielfältigung und Änderung des Handbuches ist nur der Erlaubnis und Absprache des Herstellers erlaubt!

Alle Rechte an Text und Bild der vorliegenden Schrift liegen bei Fischer Panda GmbH, 33104 Paderborn. Die Angaben wurden nach bestem Wissen und Gewissen gemacht. Für die Richtigkeit wird jedoch keine Gewähr übernommen. Es wird ausdrücklich darauf hingewiesen, dass technische Änderungen zur Verbesserung des Produktes ohne vorherige Ankündigung vorgenommen werden können. Es muss deshalb vor der Installation sichergestellt werden, dass die Abbildungen, Beziehungen und Zeichnungen zu dem gelieferten Gerät passen. Im Zweifelsfall muss bei der Lieferung nachgefragt werden.

Fischer Panda GmbH Otto-Hahn-Str. 40 D-33104 Paderborn Germany Tel. : +49 (0)5254 9202-0 Fax. : +49 (0)5254 9202-550 Hotline : +49 (0)5254 9202-767 Email : info@fischerpanda.de

www.fischerpanda.de

Web

CCS 中國和級社

9. Sicherheitshinweise Panda iControl2

9.1 Personal

Die hier beschriebenen Einstellungen können, soweit nicht anders gekennzeichnet, durch den Bediener ausgeführt werden.

Der Einbau sollte nur von speziell ausgebildetem Fachpersonal oder durch Vertragswerkstätten (Fischer Panda Service Points) ausgeführt werden.

9.2 Sicherheitshinweise

Beachten Sie die Sicherheitshinweise im Fischer PandaGenerator Handbuch.

Sollten diese nicht vorliegen, können Sie bei Fischer Panda GmbH 33104 Paderborn angefordert werden.

Durch ein externes Signal kann ein automatischer Start eingeleitet werden.

Der Generator darf nicht mit abgenommener Abdeckhaube in Betrieb genommen werden

Sofern der Generator ohne Schalldämmkapsel montiert werden soll, müssen die rotierenden Teile (Riemenscheibe, Keilriemen etc.) so abgedeckt und geschützt werden, dass eine Verletzungsgefahr ausgeschlossen wird.

Falls vor Ort eine Schalldämmkapsel angefertigt wird, muss durch gut sichtbar angebrachte Schilder darauf hingewiesen werden, dass der Generator nur mit geschlossener Schalldämmkapsel eingeschaltet werden darf.

Alle Service-, Wartungs- oder Reparaturarbeiten am Aggregat dürfen nur bei stehendem Motor vorgenommen werden.

Elektrische Spannung - Lebensgefahr!

Die elektrischen Spannungen von über 48 V sind immer lebensgefährlich. Bei der Installation und Wartung sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten.

Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

Batterie abklemmen bei Arbeiten am Generator

Es muss immer die Batterie abgeklemmt werden (zuerst Minus- dann Pluspol), wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden,

Hinweis!

Warnung! Automatikstart

Warnung!

Warnung! Elektrische Spannung

damit der Generator nicht unbeabsichtigt gestartet werden kann.

Diese gilt besonders bei Systemen mit einer Automatikstart-Funktion. Die Automatikstart-Funktion ist vor Beginn der Arbeiten zu deaktivieren.

Das Seeventil muss geschlossen werden (nur PMS Version).

Beachten Sie auch die Sicherheitshinweise der anderen Komponenten Ihres Systems.

Hinweis!

10. Generelle Bedienung

10.1 Das Panda iControl2-Panel

Das Bedienpanel "Panda iControl2-Panel" ist die Bedien- und Anzeigeeinheit der Panda iControl2-Steuerung und stellt die Schnittstelle zwischen dem Bediener und dem Panda iControl2-Steuergerät dar. Auf dem integrierten Anzeigedisplay werden neben wichtigen Daten des Systems auch Warnungen und Fehlermeldungen dargestellt.

Für die Bedienung der Panda iControl2-Steuerung stehen auf dem Bedienpanel vier Taster zur Verfügung:

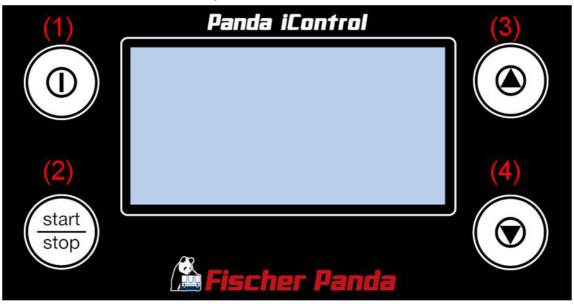


Fig. 10.1-1: Panda iControl 2 Panel

- 1. On-Off-Taste: Ein- und Ausschalten der Panda iControl2-Steuerung
- 2. Start-/Stop-Taste: Starten und Stoppen des Generators, Bestätigen von Werten in Auswahlmenüs (Enter Taste)
- 3. Cursor-Up-Taste: Umschalten von Displayseiten (aufwärts), Werte in Auswahlmenüs hochzählen
- 4. Cursor-Down-Taste: Umschalten von Displayseiten (abwärts), Werte in Auswahlmenüs runterzählen.

10.2 Startvorbereitungen / Kontrolltätigkeiten (täglich)

10.2.1 Marine Version

1. Ölstandskontrolle (Sollwert 2/3 Max.).

Der Füllstand sollte bei kaltem Motor etwa 2/3 des Maximums betragen.

Desweitern, wenn vorhanden, muss vor jedem Start der Ölstand des ölgekühlten Lagers kontrolliert werden - siehe Schauglas am Generator-Stirndeckel!

Kontrolle Kühlwasserstand.

Das externe Ausgleichsgefäß sollte im kaltem Zustand 1/3 gefüllt sein. Es ist wichtig, dass genügend Platz zum Ausdehnen vorhanden ist.

3. Prüfen, ob Seeventil geöffnet ist.

Nach dem Abschalten des Generators muss aus Sicherheitsgründen das Seeventil geschlossen werden. Es ist vor dem Start des Generators wieder zu öffnen.

4. Seewasserfilter prüfen.

Der Seewasserfilter muss regelmäßig kontrolliert und gereinigt werden. Wenn durch abgesetzte Rückstände die Seewasserzufuhr beeinträchtigt wird, erhöht dies den Impellerverschleiß.

5. Sichtprüfung

Befestigungsschrauben kontrollieren, Schlauchverbindungen auf Undichtigkeiten überprüfen, elektrische Anschlüsse kontrollieren. Elektrische Leitungen auf Beschädigungen/Scheuerstellen kontrollieren.

6. Schalten Sie die Verbraucher ab.

Der Generator sollte ohne Last gestartet werden.

- 7. Gegebenenfalls Kraftstoffventil öffnen.
- 8. Gegebenenfalls Batteriehauptschalter schließen (einschalten).

10.2.2 Fahrzeug Version

1. Ölstandskontrolle (Sollwert 2/3 Max.).

Der Füllstand sollte bei kaltem Motor etwa 2/3 des Maximums betragen.

Desweitern, wenn vorhanden, muss vor jedem Start der Ölstand des ölgekühlten Lagers kontrolliert werden - siehe Schauglas am Generator-Stirndeckel!

2. Kontrolle Kühlwasserstand.

Das externe Ausgleichsgefäß sollte im kaltem Zustand 1/3 gefüllt sein. Es ist wichtig, dass genügend Platz zum Ausdehnen vorhanden ist.

3. Sichtprüfung

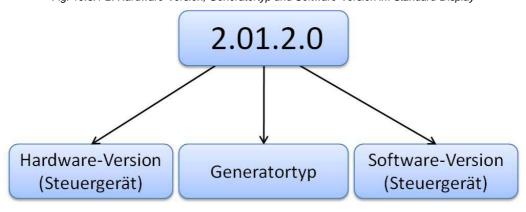
Befestigungsschrauben kontrollieren, Schlauchverbindungen auf Undichtigkeiten überprüfen, elektrische Anschlüsse kontrollieren. Elektrische Leitungen auf Beschädigungen/Scheuerstellen kontrollieren.

4. Schalten Sie die Verbraucher ab.

Der Generator sollte ohne Last gestartet werden.

- 5. Gegebenenfalls Kraftstoffventil öffnen.
- 6. Gegebenenfalls Batteriehauptschalter schließen (einschalten).

10.3 Bedienung


10.3.1 Ein- und Ausschalten der Steuerung

Durch Betätigung der On-/Off-Taste am Panda iControl2-Panel schalten Sie die Panda iControl2-Steuerung ein. Halten Sie bitte die On-/Off-Taste gedrückt, bis die Startseite mit dem Pandabären auf dem Display angezeigt wird. Durch eine erneute Betätigung der On-/Off-Taste schalten Sie die Steuerung wieder aus.

Auf der Startseite werden unten links die Hardware-Version, der Generatortyp, die Software-Version ausgegeben.

Fig. 10.3.1-2: Hardware-Version, Generatortyp und Software-Version im Standard-Display

Beispiel: Hinweis!

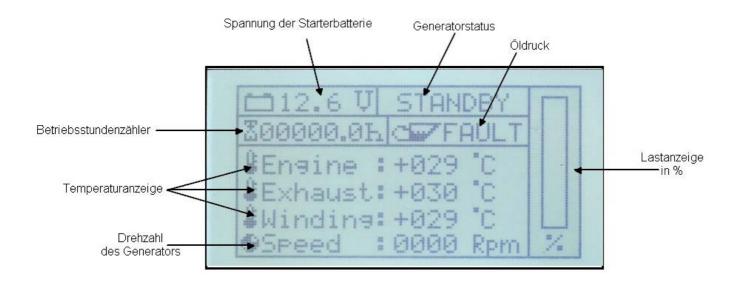
Hardware-Version:2 à iControl2-Steuergerät

Generatortyp: 01 à Panda 5000i PMS

Software-Version 2.0 à iControl2, kompatibel mit iControl-Panel2

10.3.2 Die Standard Displayseite

Fünf Sekunden nach dem Einschalten der Steuerung wechselt die Anzeige auf die Standard-Displayseite. Auf der Standard-Displayseite werden Sie über die Batteriespannung, die Betriebsstunden des Generators, die Temperaturen von Zylinderkopf, Auspuffkrümmer und Wicklung, die Drehzahl und den Status des Öldrucks informiert. Außerdem stellt eine Balkenanzeige am rechten Rand des Displays die prozentuale Auslastung des Generators dar.


Ausgaben auf der Standard-Displayseite:

- Batteriespannung (Versorgungsspannung)
- Statusfeld für die Betriebsmodi (Standby, Preheat, Starting, Override, Running, Autostart, Stopping)
- Betriebsstunden des Generators

- Öldruckstatus
- Zylinderkopftemperatur
- Temperatur des Auspuffkrümmers
- Wicklungstemperatur
- Drehzahl
- Prozentuale Auslastung

Fig. 10.3.2-1: Standard Displayseite

Das Display zeigt die iControl Board Eingangsspannung an. Hinweis!

Bei Generatorsystemen mit 12 V Start System ist dieses gleich der Spannung der Starterbatterie.

Bei Generatorsystemen mit 24 V Start System kann die Spannung der Starterbatterie nicht angezeit werden.

10.3.3 Betriebsmodi

Die Panda iControl2-Steuerung bietet verschiedene Betriebsmodi an.

10.3.3.1 Standby-Modus

Nach dem Einschalten der Steuerung über die On-/Off-Taste befindet sich das System im Standby-Modus. Das erkennt man an der Ausgabe "STANDBY" im Statusfeld oben rechts auf der Standard-Displayseite. Aus dieser Betriebsart ist das Ausschalten des Systems über die On-/Off-Taste und das Starten des Generators über die Start-/ Stop-Taste möglich. Über die Cursor-Tasten erreicht man die Service-Info-Seite.

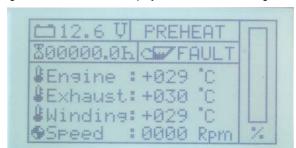
Fig. 10.3.3.1-1: Service-Info-Seite

Die Gesamtbetriebsstunden des Generators werden auf der Standard-Displayseite und auf der Service-Info-Seite ausgegeben. Durch Betätigen der Cursor-Up- oder Cursor-Down-Taste im Standby-Modus gelangt man auf die Service-Seite. Diese Seite ist mit einem Schraubenschlüssel-/Schraubendreher-Symbol gekennzeichnet. Hier wird über die Zeit bis zum nächsten Service informiert. Durch wiederholtes Betätigen der Cursor-Up- oder Cursor-Down-Taste gelangen Sie zurück auf die Standard-Seite.

Im Setup-Menü der Steuerung haben Sie die Möglichkeit, nach einer Wartung das Service-Intervall zurückzusetzen. Siehe "Setup-Menü" auf Seite 116.

Durch die variable Betriebsstundenanzeige können die Serviceintervalle um bis zu 30 % (auf max. 200 h) verlängert werden. Es ist sicherzustellen, dass die variable Betriebsstundenanzeige zwischen den Intervallen nicht unabsichtlich zurückgesetzt wird. Siehe "Service-Intervall zurücksetzen ("Service")" auf Seite 120.

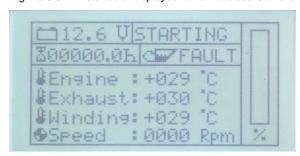
10.3.3.2 Start-Modus


Der Start-Modus ist der Übergang vom Standby-Modus in den Operation-Modus, also den Generatorbetrieb. Durch Betätigung der Start-/Stop-Taste im Standby-Modus leiten Sie den Startvorgang des Generators ein.

Zunächst erfolgt das Vorglühen. Dabei wird im Statusfeld oben rechts auf der Standard-Displayseite "PREHEAT" ausgegeben.

Das Vorglühen erfolgt immer für eine Zeitdauer von 10 Sekunden, unabhängig von der Zylinderkopftemperatur.

Bei Temperaturen unter 0 °C wird immer für 40 Sekunden vorgeglüht.


Fig. 10.3.3.2-1: Standard-Displayseite während des Vorglühens

Nach dem Vorglühen erfolgt das Einschalten des Anlassers, begleitet durch die Ausgabe "STARTING" im Statusfeld der Standard-Displayseite.

Fig. 10.3.3.2-2: Standard-Displayseite während des Startens

Die Steuerung führt nur einen Startversuch durch. Konnte der Generator nicht gestartet werden, werden Sie durch die Ausgabe "STARTING FAILS" über das Fehlschlagen des Generatorstarts informiert. Hinweis!

Durch Quittierung der Meldung mit der Cursor-Up-, Cursor-Down- oder Start-/Stop-Taste am Panda iControl2-Panel gelangen Sie zurück in den Standby-Modus.

Seeventil zudrehen im Falle von Startschwierigkeiten. (Nur Panda Marine Generatoren)

Achtung!

Wenn der Generator-Motor nach dem Betätigen der "Start"-Taste nicht sofort anspringt und weitere Startversuche erforderlich sind (z.B. zum Entlüften der Kraftstoffleitungen usw.) muss während der Startversuche unbedingt das Seeventil geschlossen werden. Während des Startvorganges dreht sich die Kühlwasser-Impellerpumpe mit und fördert Kühlwasser. Solange der Motor nicht angesprungen ist, reicht der Abgasdruck nicht aus, um das eingebrachte Kühlwasser wegzubefördern. Durch diesen länger andauernden Startvorgang würde sich Abgassystem mit Kühlwasser füllen. Dieses kann den Generator/Motor schädigen/zerstören.

Öffnen Sie das Seeventil wieder, sobald der Generator gestartet hat.

10.3.3.3 Override-Modus

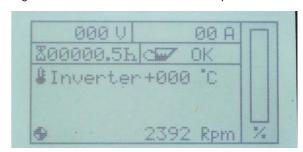
Direkt an den erfolgreichen Start des Generators schließt sich der Override-Modus an. In diesem Modus findet keine Fehlerbetrachtung statt. Die Zeitdauer des Override-Modus beträgt 10 Sekunden. Die Statusanzeige auf dem Display zeigt "OVERRIDE".

Fig. 10.3.3.3-1: Standard-Displayseite während des Override-Modus

10.3.3.4 Operation-Modus

Als Operation-Modus wird die Betriebsart bezeichnet, in welcher der Generator in Betrieb ist und alle Betriebsdaten im normalen Bereich liegen. Im Statusfeld der Standard-Displayseite wird "RUNNING" ausgegeben.

Im Operation-Modus wird die elektrische Last als Balkenanzeige rechts auf der Standard-Displayseite und auf der Inverter-Seite dargestellt. Die Balkenanzeige stellt nur einen Hinweis für die Belastung des Generators dar und wird in Prozent ausgegeben.


Fig. 10.3.3.4-1: Standard-Displayseite während des Operations-Modus

Displayseite für 1-phasige Generatoren

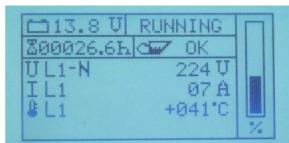
Bei den 1-phasigen Generatoren der i-Serie gibt es im Operation-Modus eine weitere Seite für die Daten des Inverters. Auf dieser Seite sehen Sie die aktuelle Inverter-Ausgangsspannung und die Inverter-Temperatur. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Fig. 10.3.3.4-2: Inverterseite während des Operation-Modus

Displayseiten für 3-phasige Generatoren

Bei den 3-phasigen Generatoren der i-Serie gibt es im Operations-Modus 5 weitere Seite für die Daten des Inverters. Auf dieser Seite sehen Sie die aktuellen Inverter-Strangspannungen und die Leiterströme. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Fig. 10.3.3.4-3: Inverterseite Strangspannungen und Leiterströme



Auf dieser Seite sehen Sie die aktuelle Inverter-Außenleiterspannungen. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Fig. 10.3.3.4-4: Inverterseite Außenleiterspannungen

Fig. 10.3.3.4-5: Phasenspannung L1

Auf dieser Seite sehen Sie die aktuelle Inverter-Ausgangsspannung der einzelnen Phase mit dem dazugehörigen Leiterstrom und die Platinen-Temperatur. Bei einer Platinen-Temperatur von 75 °C erfolgt eine Abschaltung des Inverters. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Auf dieser Seite sehen Sie die aktuelle Inverter-Ausgangsspannung der einzelnen Phase mit dem dazugehörigen Leiterstrom und die Platinen-Temperatur. Bei einer Platinen-Temperatur von 75 °C erfolgt eine Abschaltung des Inverters. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Auf dieser Seite sehen Sie die aktuelle Inverter-Ausgangsspannung der einzelnen Phase mit dem dazugehörigen Leiterstrom und die Platinen-Temperatur. Bei einer Platinen-Temperatur von 75 °C erfolgt eine Abschaltung des Inverters. Sie erreichen die Inverterseite durch die Betätigung der Cursor-Up-Taste im Operation-Mode.

Fig. 10.3.3.4-6: Phasenspannung L2

Fig. 10.3.3.4-7: Phasenspannung L3

10.3.3.5 Panda i-Generator mit elektro-magnetischer Kupplung (optional)

Während die elektro-magnetische Kupplung aktiviert ist, wird Achtung!: der Generator durch das iControl auf maximaler Drehzahl betrieben.

Nach dem Lösen der Kupplung fällt der Generator auf normale Drehzahl zurück.

10.3.3.6 Stopp-Modus

Durch Betätigung der Start-/Stop-Taste im Operations-Modus, also bei laufendem Generator, stoppen Sie den Generator. Nach dem Stoppen des Generators geht das System wieder in den Standby-Modus zurück. Das Statusfeld des Displays zeigt "STOPPING".

Wird der Generator im Automatik-Start-Modus manuell gestartet und gestoppt, fällt er aus Sicherheitsgründen in den Standby-Modus zurück.

Bei Bedarf muss der Autostart-Modus erneut aktiviert werden.

Hinweis! Manueller Start im Autostart-Modus

10.3.3.7 Autostart-Modus

Das Panda iControl2-Panel besitzt eine Autostartfunktion. Eine Brücke zwischen Pin 6 (UBAT) und Pin 7 (USTART) der Phoenix-Buchse des Bedienpanels startet den Generator bei aktivierter Autostartfunktion nach einer Verzögerung von 5 Sekunden. Das Entfernen der Brücke stoppt den Generator – ebenfalls nach einer Verzögerung von 5 Sekunden.

Um die Autostart-Funktion zu aktivieren, müssen Sie zunächst im Setup-Menü das "Autostart-Flag" setzen. Wie Sie die Autostartfunktion aktivieren, lesen Sie im Kapitel 10.4.6, "Aktivieren/Deaktivieren der Autostartfunktion ("Autostart")," auf Seite 118.

Im Statusfeld des Displays erkennen Sie an der Ausgabe "AUTOSTART", dass die Autostartfunktion aktiv ist, bzw. an der Ausgabe von "STANDBY", dass die Autostartfunktion deaktiviert ist:

Fig. 10.3.3.7-1: Standard-Displayseite im Autostart-Modus

Die Autostartfunktion bleibt auch nach dem Aus- und Wiedereinschalten der Steuerung über die On-/Off-Taste aktiv. Zur Deaktivierung der Autostartfunktion muss das Flag im EEPROM über "Disable" zurückgesetzt werden. Siehe "Aktivieren/Deaktivieren der Autostartfunktion ("Autostart")" auf Seite 118.

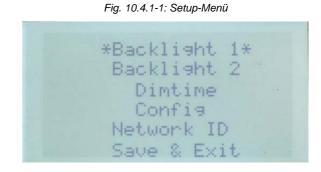
Wird der Generator im Automatik-Start-.Modus manuell gestartet und gestoppt, fällt er aus Sicherheitsgründen in den Standby-Modus zurück.

Bei Bedarf muss der Autostart-Modus erneut aktiviert werden.

Warnung! Automatikstart

Hinweis! Manueller Start im Autostart-Modus

10.4 Weiterführende Bedienung

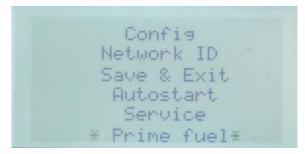

10.4.1 Setup-Menü

Im Setup-Menü kann eine Reihe von Parametern direkt über das Bedienpanel verändert werden. Um in das Setup-Menü zu gelangen, müssen Sie direkt nach dem Einschalten der Steuerung über die On-/Off-Taste und noch während der Ausgabe der Startseite mit dem Panda-Bären die Taste "Cursor down" betätigen. Sie sehen nun ein Menü mit den folgenden Unterpunkten:

Menüpunkt	Einstellbereich für
backlight 1	Einstellung des Helligkeitswertes für die Standard-Hintergrundbeleuchtung 0-9
backlight 2	Einstellung des Helligkeitswertes für die gedimmte Hintergrundbeleuchtung 0-9
Dimtime	Zeit, bis das Display in den gedimmten Zustand wechselt 0-255s 0=Funktion deaktiviert
Config	Passwortgeschützer Bereich für Fischer Panda Mitarbeiter und Fischer Panda Service points
Network ID	Einstellung der Netzwerk ID des Panels
Save & Exit	Speichern der Werte und Verlassen des Setup Menüs
Autostart	Aktivieren und Deaktivieren der Automatikstart-Funktion
Service	Rückstellung der "Betriebsstunden bis Service" Anzeige
Prime fuel	Aktivierung der Kraftstoffpumpe zum Entlüften des Generator-Kraftstoffsystems
Degree C/F	Umstellung der Anzeige °C zu °F

Über die Tasten "Cursor-Up" und "Cursor-Down" können Sie durch das Menü wandern. Der aktuell selektierte Menüpunkt ist durch zwei *-Symbole markiert, z. B "backlight 2":

Setup Menü mit markiertem * backlight 2 *


Die Start-/Stop-Taste wird im Setup-Menü zur Bestätigung verwendet. Wenn Sie die durch * markierte Zeile mit der Start-/Stop-Taste bestätigen, erreichen Sie das ausgewählte Untermenü.

Setup-Menü

Hinweis!

Fig. 10.4.1-2: Setup-Menü

10.4.2 Einstellen der Helligkeit der Hintergrundbeleuchtung ("backlight" und "dimtime")

Die Helligkeit der Display-Hintergrundbeleuchtung des Panda iControl2-Panels kann in zehn Stufen (0 - 9) variiert werden. Außerdem kann das Display zeitgesteuert gedimmt werden, wenn über eine parametrierbare Zeitdauer keine Taste am Bedienpanel betätigt wird. Für die Einstellung der Standard-Helligkeit und der gedimmten Helligkeit stehen im Setup-Menü die Punkte "backlight 1" (Standard-Helligkeit) und "backlight 2" (gedimmte Helligkeit) zur Verfügung. Diese Seiten im Service-Menü sind durch das Glühlampensymbol gekennzeichnet:

Die Zeitdauer, nach der die Hintergrundbeleuchtung auf den gedimmten Wert geschaltet werden soll, kann über den Menüpunkt "dimtime" vorgegeben werden. Auf dieser Seite können Sie die Zeit in Sekunden eingeben, dabei sind Werte von 0 s bis 255 s möglich.

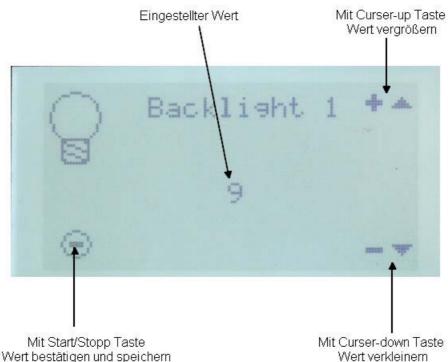


Fig. 10.4.2-1: Display Hintergrundbeleuchtung

Stellen Sie in den Untermenüs jeweils die gewünschten Werte über die Cursor-Tasten ein und bestätigen Sie anschließend ihre Einstellung über die Start-/Stop-Taste.

Hinweis!

Wenn Sie alle Parameter eingestellt haben, können Sie das Setup-Menü über den Menüpunkt "Save & Exit" verlassen. Dabei werden alle Einstellungen, die in den Untermenüs backlight 1, backlight 2, dimtime und Network ID vorgenommen wurden, im EEPROM gespeichert. Anschließend wird für 3 Sekunden die Verabschiedungsseite eingeblendet und die Steuerung ausgeschaltet.

Beim nächsten Start der Steuerung werden die Änderungen wirksam.

10.4.3 Das Konfigurationsmenü ("config")

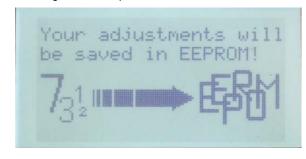
Einstellungen in diesem Bereich dürfen nur von Fischer STOPP! Panda Mitarbeitern und Fischer Panda Service Points vorgenommen werden.

Das Untermenü "config" ist ein passwortgeschützter Bereich, in dem der Generatortyp ausgewählt werden kann und Generatorparameter im EEPROM verändert werden können.

10.4.4 Die Network ID

Einstellungen in diesem Bereich dürfen nur von Fischer Panda Mitarbeitern und Fischer Panda Service Points vorgenommen werden.

STOPP! Network ID darf nicht geändert werden.


Änderung der Network ID kann zu Fehlfunktionen führen.

10.4.5 Einstellungen speichern und Setup-Menü verlassen ("Save & Exit")

Wenn Sie alle Parameter eingestellt haben, können Sie das Setup-Menü über den Menüpunkt "Save & Exit" verlassen.

Dabei werden alle Einstellungen, die in den Untermenüs backlight 1, backlight 2, dimtime und Network ID vorgenommen wurden, im EEPROM gespeichert.

Fig. 10.4.5-1: Speichern der Werte im EEPROM

Anschließend wird für 3 Sekunden die Verabschiedungsseite eingeblendet und die Steuerung ausgeschaltet. Beim nächsten Start der Steuerung werden die Änderungen wirksam.

10.4.6 Aktivieren/Deaktivieren der Autostartfunktion ("Autostart")

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Bei aktivierter Automatikstart-Funktion kann der Generator selbsttätig starten. Vor dem Aktivieren ist sicherzustellen, das die Generatorkapsel geschlossen ist und die entsprechende Warnschilder am Generator angebracht sind.

Warnung! Automatikstart

Um die Autostart-Funktion zu aktivieren, wählen Sie im Setup-Menü über die Cursor-Tasten die Zeile "Autostart" aus und bestätigen Sie anschließend über die Start-/ Stop-Taste.

Fig. 10.4.6-1: Setup-Menü

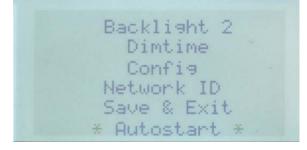
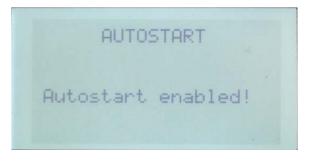


Fig. 10.4.6-2: Untermenü "Autostart"

Im Untermenü "Autostart" können Sie nun über die Cursor-Tasten zwischen den Optionen "Enable" und "Disable" wählen:

Wählen Sie bitte zur Aktivierung der Autostartfunktion "Enable" aus und bestätigen Sie wiederum mit der Start-/Stop-Taste.


Zur Deaktivierung steht der Menüpunkt "Disable" zur Verfügung.

Panda iControl bestätigt nun Ihre Eingabe:

Meldung "Autostart enabled "nach der Bestätigung der Auswahl.

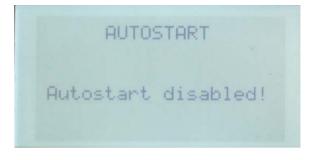


Fig. 10.4.6-3: Meldung "Autostart enabled" nach der Bestätigung der Auswahl

Meldung "Autostart disabled" nach der Bestätigung der Auswahl.

Fig. 10.4.6-4: Meldung "Autostart disabled" nach der Bestätigung der Auswahl

Die Aktivierung/Deaktivierung der Autostartfunktion wird nun im EEPROM des Bedienpanels gespeichert.

Fig. 10.4.6-5: Auswahl wird im EEPROM gespeichert

Anschließend wird die Steuerung ausgeschaltet.

Fig. 10.4.6-6: Verabschiedungsseite vor dem Ausschalten

Nach dem Wiedereinschalten der Steuerung sehen Sie im Statusfeld des Displays an der Ausgabe "AUTOSTART", dass die Autostartfunktion aktiv ist bzw. an der Ausgabe von "STANDBY", dass die Autostartfunktion deaktiviert wurde:

Fig. 10.4.6-7: Standard-Displayseite im Autostart-Modus

Die Autostartfunktion bleibt auch nach dem Aus- und Wiedereinschalten der Steuerung über die On-/Off-Taste aktiv. Zur Deaktivierung der Autostartfunktion muss das Flag im EEPROM wie oben beschrieben über "Disable" zurückgesetzt werden.

.Warnung! Automatikstart

Die Autostartfunktion von Panda iControl2 ist nun bereit. Sie können auch bei aktiver Autostartfunktion jederzeit den Generator manuell über die Start-/Stopp-Taste starten und stoppen.

Wird der Generator im Automatik-Start-Modus manuell gestartet und gestoppt, fällt er aus Sicherheitsgründen in den Standby-Modus zurück.

Hinweis! Manueller Start im Autostart-Modus

Bei Bedarf muss der Autostart-Modus erneut aktiviert werden.

10.4.7 Service-Intervall zurücksetzen ("Service")

Da die Anzeige der verbleibenden Betriebsstunden bis zum nächsten Serviceintervall jederzeit zurückgesetzt werden kann, dient sie nur der Orientierung. Die Serviceintervalle sind anhand der realen Betriebsstunden auszuführen und im Servicelog des Generators ordnungsgemäß zu dokumentieren. Hinweis!

Durch die variable Betriebsstundenanzeige können die Serviceintervalle um bis zu 30 % (auf max. 200 h) verlängert werden. Es ist sicherzustellen, dass die variable Betriebsstundenanzeige zwischen den Intervallen nicht unabsichtlich zurückgesetzt wird.

Hinweis!

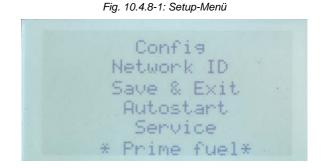
Wählen Sie im Setup-Menü den Menüpunkt "Service" und bestätigen Sie wie gewohnt über die Start-/ Stop-Taste. Sie sehen nun die bereits bekannte Seite mit den Service-Informationen, erweitert um die Anweisung die Start-Stop-Taste zu betätigen, um das Service-Intervall zurückzusetzten.

Zurücksetzen der Zeit bis zur nächsten Wartung

Durch eine erneute Betätigung der Start-Stop-Taste setzen Sie das Service-Intervall auf das Ausgangsintervall zurück. Das Service-Intervall ist für jeden Generatortyp in der Software hinterlegt.

Nach dem Zurücksetzen des Service-Intervalls wird die Steuerung ausgeschaltet. Beim Neustart erscheint die Anzeige des neuen Wertes auf der Service-Seite.

Fig. 10.4.7-1: Zurücksetzen der Zeit bis zur nächsten Wartung


10.4.8 Entlüften des Kraftstoffsystems ("Prime Fuel")

Um das Kraftstoffsystem zu entlüften, bietet Panda iControl2 die Möglichkeit, die Kraftstoffpumpe separat einzuschalten. Wählen Sie im Setup-Menü den Menüpunkt "Prime fuel" und bestätigen Sie Ihre Auswahl über die Start-/Stop-Taste.

Eine erneute Betätigung der Start-/Stop-Taste schaltet die Kraftstoffpumpe für eine Zeitdauer von maximal 30 Sekunden ein. Danach wird die Kraftstoffpumpe selbsttätig wieder ausgeschaltet.

Selbstverständlich können Sie die Kraftstoffpumpe auch manuell wieder ausschalten.

Bestätigen Sie dazu bitte erneut den Menüpunkt "Prime Fuel" und schalten Sie dann die Kraftstoffpumpe über die Start-/ Stop-Taste wieder aus.

10.4.9 Einheit für die Ausgabe der Temperaturwerte auswählen und speichern

Beim Panda iControl2-Panel haben Sie die Möglichkeit, die Temperaturwerte auf dem Display, in Grad-Celsius [°C] oder in Grad-Fahrenheit [°F] anzuzeigen. Die Umstellung erfolgt über das Bedienpanel. Wählen Sie im Setup-Menü den Menüpunkt "Degree C/F" und bestätigen Sie Ihre Auswahl über die Start-/Stop-Taste.

Wählen Sie über die Cursor-Tasten die ,0' für die Ausgabe aller Temperaturen in Grad-Celsius [°C] oder die ,1' für die Darstellung in Grad-Fahrenheit [°F]. Um Ihre Auswahl zu bestätigen, betätigen Sie bitte anschließend die Start-Stop-Taste.

Sie können nun weitere Einstellungen im Setup-Menü durchführen oder das Setup-Menü über "Save & Exit" wieder verlassen. Ihre Auswahl wird dann im EEPROM des Panda iControl2-Panels gespeichert.

Nach dem Wiedereinschalten über die On-Off-Taste wird Ihre Einstellung wirksam und alle Temperaturen werden in der gewählten Einheit ausgegeben.

Einstellmöglichkeiten:

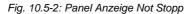
0 Ausgabe aller Temperaturen in Grad-Celsius [°C]

1 Ausgabe aller Temperaturen in Grad-Fahrenheit [°F]

10.5 iControl2-Not-Stop

Die iControl2-Steuerung ist für den Einsatz eines Not-Stop-Schalters vorbereitet. Der Stecker für den Notstopp (1X1, optional emergency off) befindet sich im Kabelbaum. Hier muss die Brücke entfernt werden und der Notstopp-Schalter angeschlossen werden.

Nach dem Entfernen der Brücke/einer Betätigung des Not-Stop-Schalters wird der Servo-Motor in die


Leerlaufposition gefahren und alle Ausgänge des Panda iControl2-Steuergerätes ausgeschaltet.

Damit wird auch die Spannungsversorgung für den Inverter ausgeschaltet.

Das Panel zeigt nach der Betätigung "EMERGENCY STOP!". Diese Meldung wird zurückgesetzt, wenn die Brücke wieder gesetzt/der Not-Stop-Schalter wieder zurückgesetzt wird.

Fig. 10.5-1: Not Stop Brücke im Kabelbaum

Seite/Page 122 Kapitel/Chapter 10: Generelle Bedienung 20.8.19

11. Installation

Alle Anschlussleitungen und Anweisungen für den Einbau sind für "Standard"-Einbausituationen ausgelegt und ausreichend.

Da Fischer Panda die genaue Einbau- und Betriebssituation (z. B. besondere Fahrzeugformen, hohe Fahrgeschwindigkeiten und besondere Einsatzbedingungen o. ä.) nicht bekannt sind, kann diese Installationsvorschrift als Vorlage und Beispiel dienen. Die Installation muss von einem entsprechenden Fachmann nach den örtlichen Begebenheiten und Vorschriften entsprechend angepasst und ausgeführt werden.

Schäden durch eine falsche, nicht angepasste Installation/ Einbau sind nicht durch die Garantie abgedeckt.

Achtung! System richtig auslegen.

11.1 Personal

Die hier beschriebene Installation darf nur von speziell ausgebildetem Fachpersonal oder durch Vertragswerkstätten (Fischer Panda Service Points) ausgeführt werden.

11.1.1 Gefahrenhinweise für die Installation

Beachten Sie die allgemeinen Sicherheitshinweise am Anfang dieses Handbuches.

Hinweis!

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Es muss immer die Batteriebank abgeklemmt werden (zuerst Minuspol dann Pluspol), wenn Arbeiten am Generator oder am elektrischen System des Generators vorgenommen werden, damit der Generator nicht unbeabsichtigt gestartet werden kann.

.Warnung! Automatikstart

Unsachgemäße Installation kann zu schweren Personenoder Sachschäden führen. Deshalb:

- Installationsarbeiten nur bei abgestelltem Motor vornehmen.
- Vor Beginn der Arbeiten für ausreichende Montagefreiheit sorgen.
- auf Ordnung und Sauberkeit am Arbeitsplatz achten! Lose aufeinander- oder umherliegende Bauteile und Werkzeuge sind Unfallquellen.
- Installationsarbeiten nur mit handelsüblichem Werkzeug und Spezialwerkzeug durchführen. Falsches oder beschädigtes Werkzeug kann zu Verletzungen führen.

Warnung! Verletzungsgefahr

LEBENSGEFAHR! - Unsachgemäße Bedienung kann zu Gesundheitsschäden und Tod führen.

Die elektrischen Spannungen von über 48 V sind immer lebensgefährlich. Bei der Installation sind deshalb unbedingt die Vorschriften der jeweils regional zuständigen Behörde zu beachten. Die Installation der elektrischen Anschlüsse des Generators darf aus Sicherheitsgründen nur durch einen Elektrofachmann durchgeführt werden.

Generator und Kühlwasser können bei und nach dem Betrieb heiß sein. Verbrennungsgefahr/ Verbrühungsgefahr!

Durch den Betrieb kann sich im Kühlsystem ein Überdruck bilden.

Bei Installationsarbeiten ist persönliche Schutzausrüstung zu tragen. Hierzu gehört:

- Eng anliegende Schutzkleidung
- Sicherheitsschuhe
- Sicherheitshandschuhe
- Gehörschutz
- ggf. Schutzbrille

Um Schäden an den Geräten zu vermeiden, sind bei Arbeiten am Generator immer alle Verbraucher abzuschalten.

Warnung! Elektrische Spannung

Warnung! Heiße Oberfläche/Material

Gebot! Schutzausrüstung erforderlich

Achtung! Alle Verbraucher abschalten

11.2 Entsorgung der Komponenten

Elektronikkomponenten sind schädlich für die Umwelt. und beinhalten seltene Rohstoffe.

Ausgediente Komponenten sammeln und fachgerecht entsorgen!

Gebot! Der Umwelt zu liebe

Das iControl2 Board ist in der Regel am Generator vormontiert und entsprechende Anschlussleitungen für die Verbindung mit dem iControl2 Panel und dem PMGi vorbereitet. Siehe Generatorhandbuch.

11.2.1 Panda iControl2-Panel mit Einbaugehäuse

Fig. 11.2.1-1: Panda iControl2-Panel mit Panel-Anschlusskabel und geschlossenem Gehäuse

11.2.2 Klemmenbelegungen am Panda iControl2-Panel

Der Anschluss des Panda iControl2-Panels erfolgt über eine 7-polige Phoenix-Buchse.

Fig. 11.2.2-1: Klemmenbelegung Panda iControl2-Panel

Klemme	Klemmenbezeichnung	Kabelfarbe	Funktion
1	UBUS	Weiss (WH)	Bus-Versorgungsspannung
2	GND	Braun (BN) + Schirm	Masse Fischer Panda-Bus, Masseverbindung zwischen Panda iController und Panda iControl-Panel
3	REIZ	Grün (GN)	Reizleitung, wird gegen Masse gezogen, wenn das Steuergerät einschalten soll.
4	DATA-A	Pink (PK)	Fischer Panda-Bus Datenleitung A
5	DATA-B	Grau (GY)	Fischer Panda-Bus Datenleitung B
6	UBATT		Autostart ^a
7	USTART/STOPP		Autostart ^b

a. Eine Brücke zwischen Klemme 6 und 7 schließt den Autostart-Kontakt.

Verwenden Sie nur original Fischer Panda Anschlusskabel.

Hinweis!

b. Eine Brücke zwischen Klemme 6 und 7 schließt den Autostart-Kontakt.

11.3 Abmessungen

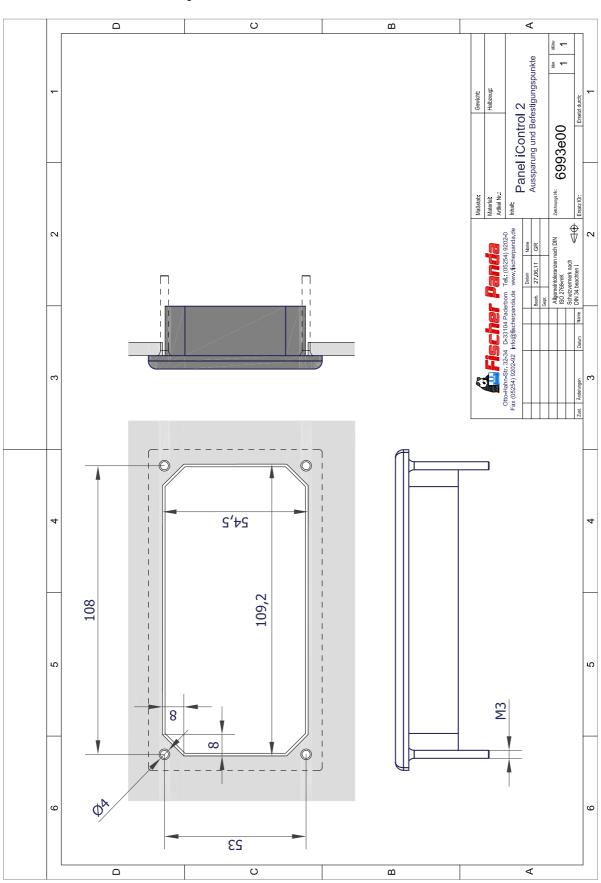


Fig. 11.3-1: Gehäuse des Panda iControl2-Panels

Aufgrund der offenliegenden Anschlussklemmen hat das icontrol2 Panel eine Schutzklasse von IP 04.

Hinweis!

Bei sachgemäßen Einbau mit einer Dichtung (z.B. Sikaflex) kann bis zu IP66 erreicht werden.

11.4 Beschaltung des Panda iControl2-Steuergerätes

Fig. 11.4-1: Beschaltung des Panda iControl2-Steuergerätes

Das Panda iControl2-Steuergerät wird über die 18-polige Buchse mit dem Kabelbaum verbunden. Die mittlere 6-polige Buchse ist für den Fischer Panda Standard-Bus bestimmt. An diese Buchse wird das Panda iControl2-Panel angeschlossen. Der Fischer Panda CAN-Bus liegt auf der 6-poligen Buchse unten rechts auf der Leiterplatte. Die Belegungen der Steckverbinder sind in den nachfolgenden Tabellen angegeben. Siehe "Klemmenbelegungen am Panda iControl2-Steuergerät" auf Seite 128.

- 1. Anschlussbuchse Kabelbaum, 18-polig
- 2. Anschlussbuchse, 6-polig, Fischer Panda Standard-Bus
- 3. Anschlussbuchse, 6-polig, Fischer Panda CAN-Bus für optionale Nutzung.
- 4. Anschlussbolzen Phase L3 (Lastausgang zum Inverter) und Eingang von der Wicklung L3
- 5. Anschlussbolzen Phase L2 (Lastausgang zum Inverter) und Eingang von der Wicklung L2
- 6. Anschlussbolzen Wicklung L1
- 7. Anschlussbolzen Phase L1 (Lastausgang zum Inverter)
- 8. Eingang Versorgungsspannung +12 V
- 9. Ausgang Vorglühen

11.4.1 Klemmenbelegungen am Panda iControl2-Steuergerät

11.4.1.1 Klemmenbelegung des 18-poligen Steckers

Fig. 11.4.1.1-1: Klemmenbelegung des 18-poligen Steckverbinders

Klemme	E/A	Funktion
1		Stellmotor (Option)
2	E	Temperatur Zylinderkopf
3	E	Temperatur Auspuffkrümmer
4	E	Temperatur Wicklung
5	E	Temperatur Reserve
6	E	Öldruck
7	E	Not-Halt Not-Halt
8		GND, Masse für alle Temperatursensoren
9		GND
10		Stellmotor (Option)
11		+5 V Servo-Motor (rote Leitung)
12	А	PWM-Servo-Motor (gelbe Leitung)
13	А	Booster (Option, abhängig vom Generatortyp)
14	А	Kraftstoffpumpe
15	А	Kraftstoffpumpe
16	А	Anlasser
17	А	Anlasser
18	А	Anlasser

11.4.1.2 Fischer Panda Standard-Bus

Fig. 11.4.1.2-1: Klemmenbelegung Fischer Panda Standard-Bus

Klemme	Klemmenbezeichnung	Funktion
1	UBUS	Bus-Versorgungsspannung
2	GND	Masse Fischer Panda-Bus, Masseverbindung zwischen Panda iControl2-Steuergerät und Panda iControl2-Panel
3	REIZ	Reizleitung, wird vom Panel gegen Masse gezogen, wenn das Steuergerät einschalten soll
4	DATA+	Fischer Panda-Bus Datenleitung A
5	DATA-	Fischer Panda-Bus Datenleitung B
6	UBAT	Batteriespannung

11.4.1.3 Fischer Panda CAN-Bus

Fig. 11.4.1.3-1: Klemmenbelegung Fischer Panda CAN-Bus

Klemme	Klemmenbezeichnung	Funktion
1	UBUS	Bus-Versorgungsspannung
2	GND	Masse Fischer Panda-Bus, Masseverbindung zwischen iControl2-Steuergerät und Panda iControl2-Panel
3	REIZ	Reizleitung, wird vom Panel gegen Masse gezogen, wenn das Steuergerät einschalten soll
4	CAN-L	CAN-Low
5	CAN-H	CAN-High
6	UBAT	Batteriespannung

11.5 Master and Slave Panels

Mit dem iControl2 ist es möglich, bis zu vier Panels an einem iGenerator zu betreiben (ein Master und dei Slave)

Das Standard iControl2 Panel hat die Art. Nr. 21.02.02.131P. Dieses Panel hat eingebaute Abschlusswiderstände.

Das iControl2 Slave Panel hat die Art. Nr. 21.02.02.132P. Es ist mit einem Aufkleber auf der Rückseite "Slave Panel" gekennzeichnet.

In einem iControl System mit Master und Slave Panels muss der AMster immer der letze in der Reihe sein, so dass am Ende des FP-Busses die Abschlusswiderstände sind.

Das Slave Panel kann nicht allein benutzt werden. Das Slave Panel muss zwischen dem iControl Steuergerät (am iGenerator) und dem Master Panel angeschlossen werden.

Der Master Slave Betrieb kann ab der Software 2.3 (Controller und Panel) eingesetzt werden.

Alle Panels (Master and Slave) haben die Adresse "1" eingestellt. Diese Adresse kann im Menü geändert werden. Mögliche Adressen sind 1, 2, 3 und 4. Jedes Panel muss eine eigene Adresse haben.

Um die Option "Automatik-Start" zu nutzen, ist der Automatik-Start an das Panel mit der Adresse "1" anzuschließen.

Die Aktivierung bzw. Deaktivierung kann von jedem Panel aus erfolgen.

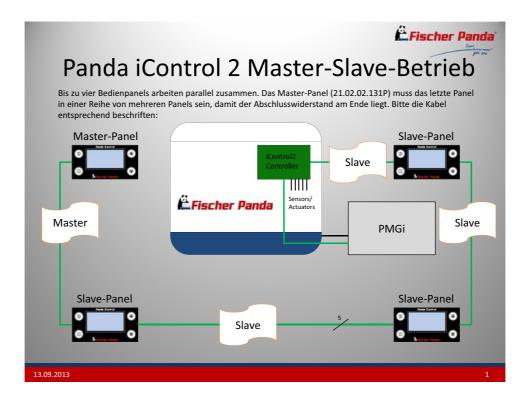


Fig. 11.5-1: Master Slave Schema

11.6 Inbetriebnahme

Nach erfolgter erfolgreicher Installation ist eine Inbetriebnahme durchzuführen.

Hierfür wird das Inbetriebnahmeprotokoll für den Generator vom installierenden Fachmann vollständig abgearbeitet und ausgefüllt. Das ausgefüllte Protokoll ist dem Betreiber zu übergeben.

Der Betreiber ist in die Bedienung, Wartung und Gefahren des Generators einzuweisen. Dieses betrifft sowohl die im Handbuch aufgeführten Wartungsschritte und Gefahren, sowie weiterführende, die sich aus der spezifischen Installation und den angeschlossenen Komponenten ergeben.

Das Original Inbetriebnahmeprotokoll des Generators muss an Fischer Panda gesendet werden, um die vollständige Garantie zu erhalten. Fertigen Sie vorher eine Kopie für Ihre Unterlagen.

Die entsprechenden Vordrucke liegen dem Generatorhandbuch bei.

Hinweis!

12. Wartung

12.1 Wartung des icontrol2 Steuergerätes

Das iControl2 Steuergerät ist wartungsfrei. Die Sicherungen im Steuergerät sind selbstheilend.

12.1.1 Reinigung des iControl2 Steuergerätes

Das Gehäuse ist bei der allgemeinen Generatorreinigung mitzureinigen. Das Gehäuse kann nebelfeucht mit einem weichen Tuch abgewischt werden. Hierbei ist darauf zu achten, dass keine Feuchtigkeit in die Buchsen und das Gehäuse eindringt.

12.2 Wartung des iControl2 Fernbedienpanels

Das iControl2 Fernbedienpanel ist wartungsfrei.

12.2.1 Reinigung des iControl2 Fernbedienpanels

Das Display kann mit einem weichen Tuch und Seifenlauge nebelfeucht gereinigt werden. Scharfe Reiniger sind nicht geeignet, und können zum Erblinden der Displayfolie führen.

Leere Seite / Intentionally blank

Seite/Page 132 Kapitel/Chapter 12: Wartung 20.8.19

13. Warnungen und Fehlermeldungen

Um einen sicheren Betrieb des Generators zu ermöglichen, gibt es bei der Panda iControl2-Steuerung eine Reihe von Warnungen und Fehlermeldungen, die den Generatorbetrieb beeinflussen.

13.1 Warnungen

Warnungen werden ausgegeben, wenn die überwachte Größe, z. B. eine Temperatur, die definierte Warnschwelle erreicht hat. Die Ausgabe von Warnungen auf dem Display des Panda iControl2-Panels erfolgt durch die zyklische Ausgabe des Wortes "HIGH" bzw. "LOW" im Wechsel mit dem Messwert, z. B. der Temperatur. Warnungen werden erst dann aktiv, wenn die Zeit zwischen dem Erreichen des Schwellenwertes und der definierten Verzögerungszeit abgelaufen ist.

Warnungen führen nicht zu einer Abschaltung des Generators oder der Steuerung.


Hinweis!

13.1.1 Beispiele für Warnungen auf dem Display:

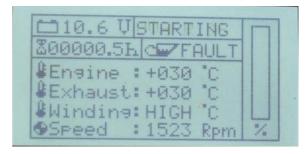

Warnung "Batteriespannung zu niedrig"

Fig. 13.1.1-1: Warnung "Batteriespannung zu niedrig"

Warnung "Temperatur Wicklung zu hoch"

Fig. 13.1.1-2: Warnung "Wicklung" zu hoch"

13.1.2 Warnmeldungen

Alle für Panda iControl2 definierten Warnmeldungen und die entsprechenden Displayausgaben sind in der nachfolgenden Tabelle zusammengestellt.

Fig. 13.1.2-1: Warnmeldungen

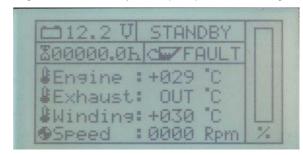
Warnmeldung auf dem Display	Bedeutung der Warnmeldung
"HIGH" blinkt im Wechsel mit dem Temperaturwert des Zylinderkopfes	Zylinderkopftemperatur ist zu hoch, hat die Warnschwelle erreicht
"HIGH" blinkt im Wechsel mit dem Temperaturwert der Wicklung	Wicklungstemperatur ist zu hoch, hat die Warnschwelle erreicht
"HIGH" blinkt im Wechsel mit dem Temperaturwert des Auspuffkrümmers	Temperatur Auspuffkrümmer ist zu hoch, hat die Warnschwelle erreicht
"LOW" blinkt im Wechsel mit dem Spannungswert der Starterbatterie	Spannung der Starterbatterie ist zu niedrig, hat die Warnschwelle erreicht

13.2 Fehler

Fehlermeldungen werden ausgegeben, wenn die überwachte Größe, z.B. eine Temperatur, die definierte Fehlerschwelle erreicht hat.

Bei den Temperatursensoren führt auch ein loser Stecker oder ein Kabelbruch zu einem Fehler und zur Abschaltung des Generators.

Einer Fehlermeldung geht in der Regel eine Warnung voraus, da vor der Fehlerschwelle die Warnschwelle erreicht wird. Die Ausgabe von Fehlermeldungen auf dem Display des Panda iControl2-Panels erfolgt durch die Darstellung des Fehlertextes auf einer gelöschten Displayseite. Fehler werden erst dann aktiv, wenn die Zeit zwischen dem Erreichen der Fehlerschwelle und der definierten Verzögerungszeit abgelaufen ist.


Fehler führen zu einer Abschaltung des Generators. Liegt ein Fehler wegen einer zu niedrigen Batteriespannung vor, so wird die Steuerung vollständig abgeschaltet, um ein zu tiefes Entladen der Batterie zu verhindern.

Beispiel für eine Fehlermeldung auf dem Display:

Fehler "Temperatur Abgaskrümmer out of range"

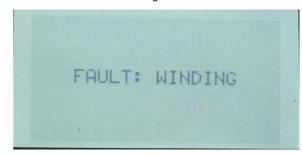

(Kabelbruch)

Fig. 13.2.0-1: Fehler "Zylinderkopftemperatur out of range"

Fehler "Winding", Wicklungstemperatur zu hoch

Fig. 13.2-2: Fehler "STARTING FAILS", Startvorgang war nicht erfolgreich

13.2.1 Fehlermeldungen

Alle für Panda iControl2 definierten Fehlermeldungen und die entsprechenden Displaytexte sind in der nachfolgenden Tabelle zusammengestellt.

Fig. 13.2.1-1: Fehlermeldungen

Fehlermeldung auf dem Display	Bedeutung der Fehlermeldung
"OUT" wird anstelle einer Temperatur ausgegeben	"Out of range" – Kabelbruch am entsprechenden Temperatursensor

Fig. 13.2.1-2: Errorcodes

Error	Meaning	Error Message English	Error Message German
code			
5	Starting failed	STARTING FAILS	STARTABBRUCH
9	Watchdog Error	WATCHDOG	WATCHDOG
12	Winding temperature fault	FAULT: WINDING	TEMP. WICKLUNG
13	Winding temperature out of range	OUT: WINDING	OUT: WICKLUNG
14	Exhaust temperature fault	FAULT: EXHAUST	TEMP. ABGAS
15	Exhaust temperature out of range	OUT: EXHAUST	OUT: ABGAS
16	Engine temperature fault	FAULT: CYL.HEAD	TEMP. MOTOR
17	Oil pressure fault	FAULT: OILPRESS	FEHLER: OELDRUCK
18	Battery voltage low	BATTERY LOW	BATTERIE ENTLADEN
19	unexpected stop/Problem with fuel supply	PROBLEM WITH / FUEL SUPPLY!	PROBLEM MIT DER / KRAFTSTOFFVERS.!
22	Emergency stop	EMERGENCY STOP!	NOT-HALT!
23	Engine temperature out of range	OUT: CYL.HEAD	OUT: MOTOR
30	Inverter overtemp	Inverter overtemp	Inverter Uebertemp.
31	inverter overload	Inverter overload	Inverter Ueberlast
32	inverter communication lost	Inverter com. lost	Inverter Kom. defekt
33	inverter synchronisation lost	INV. SYNC. FAILED	INV. SYNC. FEHLER
34	Engine fault (EDC)	ENGINE FAULT	MOTOR FEHLER
35	CAN communication lost	CAN. COMM.LOST	CAN KOMM. FEHLER
36	inverter overload slave 1	L1 OVERLOAD	L1 UEBERLAST
37	inverter overload slave 2	L2 OVERLOAD	L2 UEBERLAST
38	inverter overload slave 3	L3 OVERLOAD	L3 UEBERLAST
39	inverter overload slave DC	DC OVERLOAD	DC UEBERLAST
40	Overvoltage	FAULT: OVERVOLTAGE	Fehler: Ueberspg.
41	Undervoltage	FAULT: LOWVOLTAGE	Fehler: Unterspg.
42	DC-Overvoltage	DC OVERVOLTAGE	DC UEBERSPG.
66	RedundantTempSwitchOff	NOTSTOP!	NOTSTOPP!
100	Communication Error	NO CONNECTION / BUS ERROR!	KEINE VERBINDUNG / BUS FEHLER!
207	Init failed (no generator type is selected)	INIT FAILED!	INIT FAILED!

Fehlermeldungen können mit der Start-/Stop-Taste quittiert werden. Die Steuerung geht dann in den Standby-Modus zurück.

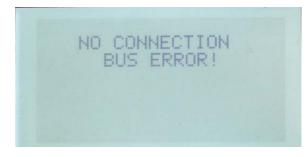
13.2.2 Warn- und Fehlerschwellen

Die Schwellenwerte, die zur Auslösung von Warnungen und Fehlern führen, sind abhängig vom Generatortyp und in der unteren Tabelle zusammengestellt.

Fig. 13.2.2-1: Warn- und Fehlerschwellen für unterschiedliche Generatortypen

Generatortyp	Warnung/Fehler	Warnschwelle	Fehlerschwelle
5000i Marine	Zylinderkopftemperatur	85 °C	95 °C
	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	70 °C	75 °C
	Verzögerung	1 s	1 s
5000i Fahrzeug	Zylinderkopftemperatur	90 °C	95 °C
	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	100 °C	105 °C
	Verzögerung	1 s	1 s
P8000i / P10000i Marine	Zylinderkopftemperatur	90 °C	95 °C
	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	70 °C	75 °C
	Verzögerung	1 s	1 s
P8000i / P10000i Fahrzeug	Zylinderkopftemperatur	90 °C	95 °C
. 0000171 1000011 41112049	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	100 °C	105 °C
	Verzögerung	1 s	1 s
P8-P50 Marine	Zylinderkopftemperatur	90 °C	95 °C
1 0 1 30 Manine	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	70 °C	75 °C
	Verzögerung	1 s	1 s
P8-P50 Fahrzeug	Zylinderkopftemperatur	95 °C	100 °C
ro-roo raniizeug	Verzögerung	5 s	5 s
	Wicklungstemperatur	160 °C	165 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer		
	Verzögerung	100 °C 1 s	105 °C 1 s
D15000; Marina		90 °C	95 °C
P15000i Marine	Zylinderkopftemperatur Verzögerung	5 s	5 s
	Wicklungstemperatur Verzögerung	130 °C 5 s	135 °C 5 s
	Temp. Auspuffkrümmer	70 °C	75 °C
D	Verzögerung	2 s	2 s
P15000i Fahrzeug	Zylinderkopftemperatur	90 °C	95 °C
	Verzögerung	5 s	5 s
	Wicklungstemperatur	130 °C	135 °C
	Verzögerung	5 s	5 s
	Temp. Auspuffkrümmer	95 °C	100 °C
	Verzögerung	2 s	2 s
P25i Marine	Zylinderkopftemperatur	90°C	95°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5S
	Temp. Auspuffkrümmer	70°C	75°C
	Verzögerung	28	2S

Generatortyp	Warnung/Fehler	Warnschwelle	Fehlerschwelle
P25i Fahrzeug	Zylinderkopftemperatur	90°C	95°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	100°C	105°C
	Verzögerung	2s	2s
P45i Marine 230V/400V	Zylinderkopftemperatur	90°C	95°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	80°C	85°C
	Verzögerung	2s	2s
P45i Fahrzeug 230V/400V	Zylinderkopftemperatur	98°C	105°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	100°C	105°C
	Verzögerung	2s	2s
P45i Marine 3x230V	Zylinderkopftemperatur	98°C	105°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	70°C	75°C
	Verzögerung	2s	2s
P45i Fahrzeug 3x230V	Zylinderkopftemperatur	98°C	105°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	100°C	105°C
	Verzögerung	2s	2s
P60i Marine	Zylinderkopftemperatur	90°C	95°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	70°C	75°C
	Verzögerung	2s	2s
P60i Fahrzeug	Zylinderkopftemperatur	90°C	95°C
	Verzögerung	5s	5s
	Wicklungstemperatur	130°C	135°C
	Verzögerung	5s	5s
	Temp. Auspuffkrümmer	95°C	98°C
	Verzögerung	2s	2s
Alle Generatortypen	Spannung Starterbatterie niedrig	11,8 V	10,8 V
	Verzögerung	30 s	30 s
	Spannung Starterbatterie hoch	15,0 V	
		5 s	


13.2.3 Busfehler

Kommt es auf dem Fischer Panda-Bus zu einem Verlust der Kommunikation, wird nach einer Zeitdauer von 10 Sekunden ein Fehler auf dem Display ausgegeben:

Dieser Fehler tritt auf, wenn mindestens eine der zwei Datenleitungen des Fischer Panda-Busses aufgetrennt wird. Ist die Verbindung wieder hergestellt, kann die Fehlermeldung mit der Start-/Stop-Taste quittiert werden.

Fig. 13.2.3-1: Fehler "NO CONNECTION", Fehler in der Kommunikation (Fischer Panda Bus)

Beim Verlust der Kommunikation ist der Generator zu sichern (Batterietrennschalter öffnen) und alle Steckverbindungen und Kabel auf festen Sitz bzw. Beschädigungen zu überprüfen.

13.3 Der Fehlerspeicher des iControl2 Panels

Die Panda iControl2-Steuerung besitzt ab der Software-Version PiC2_2.9 (Steuerplatine) und PiP2_2.9 (Bedienpanel) einen Fehlerspeicher, in dem die letzten sechs Fehler im Klartext dokumentiert werden.

13.3.1 Wie erreicht man den Fehlerspeicher des iControl2-Panels?

Der Fehlerspeicher ist ganz einfach über das für jeden Benutzer offene Setup-Menü des Bedienpanels erreichbar.

Das Setup-Menü erreicht man wie gewohnt:

- Um in das Setup-Menü zu gelangen, betätigt man direkt nach dem Einschalten der Steuerung <u>und noch während</u> <u>der Ausgabe der Startseite mit dem Panda-Bären</u>, die Taste "Cursor down".
- Sie sehen nun das Setup-Menü mit seinen Menüpunkten.
- Über die Tasten "Cursor-Up" und "Cursor-Down" können Sie durch das Menü navigieren.
- Der aktuell selektierte Menüpunkt ist durch zwei *-Symbole markiert.
- Die Start-/Stop-Taste wird im Setup-Menü zur Bestätigung verwendet. Wenn Sie die durch * markierte Zeile mit der Start-/Stop-Taste bestätigen, erreichen Sie das ausgewählte Untermenü.
- Wählen Sie für die Anzeige des Fehlerspeichers den Menüpunkt Error mem.

13.3.2 Wie werden abgespeicherte Fehler angezeigt?

Die Fehler werden im Klartext angezeigt. Vorangestellt ist die Betriebsstunde, in der der Fehler aufgetreten ist. Der Fehler mit der höchsten Betriebsstunde wird in der ersten Zeile angezeigt. Ältere Fehlereinträge befinden sich absteigend mit der Betriebsstunde in den darunterliegenden Zeilen. Sind bereits sechs Fehler im Speicher vorhanden, so wird der älteste Eintrag gelöscht.

Ein Beispiel für die Ausgabe eines Fehlereintrages: **3045.2h COMMUNICATION**Dieser Eintrag bedeutet: In der Betriebsstunde 3045.2 ist ein Fehler in der Buskommunikation aufgetreten.

13.3.3 Wie verlasse ich den Fehlerspeicher nach dem Betrachten der Einträge?

Über die Start-Stopp-Taste kommt man zurück zur Standby-Seite.

13.3.4 Kann ich den Fehlerspeicher löschen?

Nein, das Löschen des Fehlerspeichers ist nicht möglich.

13.3.5 Wo werden die Fehler abgespeichert?

Im EEPROM des Panels oder im Speicher der Steuerplatine.

Die Fehler werden im EEPROM der Steuerplatine gespeichert. Das Bedienpanel zeigt die dort gespeicherten Fehlereinträge nur an. Sollte im Servicefall das Bedienpanel ausgetauscht werden müssen, bleiben die Einträge im Fehlerspeicher erhalten.

13.3.6 In welcher Sprache werden die gespeicherten Fehler angezeigt?

Die Anzeige der gespeicherten Fehler erfolgt in der Sprache, die am Bedienpanel eingestellt ist, je nach gewählter Einstellung also in Englisch oder in Deutsch.

13.3.7 Ist es möglich, einen älteren iGenerator um den Fehlerspeicher zu erweitern?

Ja, durch ein Software-Update bei Steuerplatine und Panel ist es möglich, ein bestehendes System um diese Funktion zu erweitern.

Fig. 13.3.7-1: Abbildung: Ausgabe der gespeicherten Fehler auf dem Bedienpanel

14. Anhang

14.1 Technische Daten

14.2 Technische Daten iControl2 Steuergerät

Fig. 14.2-1: Technische Daten iControl 2 Steuergerät

	iControl 2 Steuergerät
Versorgungsspannung	12 V-13,5 V (12 V Automotive)
Stromverbrauch Nominal	175 mA
Stromverbrauch Standby	2,5 mA
Betriebstemperatur	-20 °C bis +85 °C
Lagertemperatur	-30 °C bis +85 °C
Hallelement Stromsensor	max. 20 A
max. Anzugsmoment der Anschlussbolzen	1,2 Nm

14.3 Technische Daten iControl2 Fernbedienpanel

Fig. 14.3-1: Technische Daten iControl2 Fernbedienpanel

	iControl 2 Steuergerät
Versorgungsspannung	12 V-24 V (12 V oder 24 V Automotive)
Stromverbrauch ausgeschaltet	0 mA
Stromverbrauch Standby - Backlight Helligkeit 9	45 mA
Stromverbrauch Standby - Backlight Helligkeit 4	33 mA
Stromverbrauch Standby - Backlight Helligkeit 0	25 mA
Betriebstemperatur	-20 °C bis +70 °C
Lagertemperatur	-30 °C bis +80 °C

Leere Seite / Intentionally blank

Seite/Page 142 Kapitel/Chapter 14: Anhang 20.8.19